1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
13

Adriana y Luisa fueron a la feria y decidieron subirse a la rueda de la fortuna. Si el diámetro de la rueda es de 8 metros, ¿Qué

recorrido hicieron dando una vuelta completa? Considera Pi= 3.14
Mathematics
1 answer:
sashaice [31]3 years ago
6 0

Answer:

Translation?

Step-by-step explanation:

You might be interested in
Roni's parents are planning a vacation. They found a cabin to rent for $75 a day with no deposit. They also found a hotel that w
densk [106]

Answer:

The answer is C

Step-by-step explanation:

5 0
3 years ago
An experiment consists of drawing 1 card from a standard​ 52-card deck. let e be the event that card drawn is a 33. find​ p(e).
Dafna1 [17]

1 out of 52. So 1/52 equals some decimal. Plug in calc.

4 0
2 years ago
HELP ASAP 30 POINTS GIVEN
Sati [7]
The slope of JK is -3/7
The slope of LK is 2
The slope of ML is -3/7
The slope of MJ is 2
Quadrilateral JKLM is a parallelogram because both pairs of opposite sides are parallel. YOU'RE WELCOME :D
4 0
3 years ago
Read 2 more answers
(6+23) x (32-25) + 72<br> I just need to see what the answer is to check my work
Vlad1618 [11]

Answer:

275

Step-by-step explanation:

6+23=29 and 32-25=7

29 x 7 = 203

203 + 72 = 275

The final answer is 275.

Hope this helps!

7 0
2 years ago
Because of their connection with secant​ lines, tangents, and instantaneous​ rates, limits of the form ModifyingBelow lim With h
Gre4nikov [31]

Answer:

\dfrac{1}{2\sqrt{x}}

Step-by-step explanation:

f(x) = \sqrt{x} = x^{\frac{1}{2}}

f(x+h) = \sqrt{x+h} = (x+h)^{\frac{1}{2}}

We use binomial expansion for (x+h)^{\frac{1}{2}}

This can be rewritten as

[x(1+\dfrac{h}{x})]^{\frac{1}{2}}

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}

From the expansion

(1+x)^n=1+nx+\dfrac{n(n-1)}{2!}+\ldots

Setting x=\dfrac{h}{x} and n=\frac{1}{2},

(1+\dfrac{h}{x})^{\frac{1}{2}}=1+(\dfrac{h}{x})(\dfrac{1}{2})+\dfrac{\frac{1}{2}(1-\frac{1}{2})}{2!}(\dfrac{h}{x})^2+\tldots

=1+\dfrac{h}{2x}-\dfrac{h^2}{8x^2}+\ldots

Multiplying by x^{\frac{1}{2}},

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}=x^{\frac{1}{2}}+\dfrac{h}{2x^{\frac{1}{2}}}-\dfrac{h^2}{8x^{\frac{3}{2}}}+\ldots

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}-x^{\frac{1}{2}}=\dfrac{h}{2x^{\frac{1}{2}}}-\dfrac{h^2}{8x^{\frac{3}{2}}}+\ldots

\dfrac{x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}-x^{\frac{1}{2}}}{h}=\dfrac{1}{2x^{\frac{1}{2}}}-\dfrac{h}{8x^{\frac{3}{2}}}+\ldots

The limit of this as h\to 0 is

\lim_{h\to0} \dfrac{f(x+h)-f(x)}{h}=\dfrac{1}{2x^{\frac{1}{2}}}=\dfrac{1}{2\sqrt{x}} (since all the other terms involve h and vanish to 0.)

8 0
2 years ago
Other questions:
  • HELP!!!!!!!!!! PLEASE!!!!!!!WILL MARK AS BRAINLIEST
    12·1 answer
  • Find the x- and y-intercept of the line.<br><br> -7/5x -4y = 7
    8·1 answer
  • Find the x and y intercepts of the graph of the linear equation 3x+6y=24
    9·1 answer
  • The temperature fell from 0Degrees Fahrenheit to 6 and three-fifthsDegrees Fahrenheit below 0Degrees Fahrenheit in 2 and one-fif
    10·2 answers
  • Help me with this 30 points
    14·2 answers
  • Gemma and Leah are both jewelry maker Gemma 106 beaded necklaces Leah made 39 more necklaces then Gemma
    5·1 answer
  • Graph<br><br> y−5=43(x−5) <br><br> help quick
    10·2 answers
  • HEY PLS HELP :))))))))))))
    14·1 answer
  • !help asap!
    7·1 answer
  • Do the ratios 2:4 and 5:10 form a proportion?<br> yes or no
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!