Answer:
<h2>
The right option is twelve-fifths</h2>
Step-by-step explanation:
Given a right angle triangle ABC as shown in the diagram. If ∠BCA = 90°, the hypotenuse AB = 26, AC = 10 and BC = 24.
Using the SOH, CAH, TOA trigonometry identity, SInce we are to find tanA, we will use TOA. According to TOA;
Tan (A) = opp/adj
Taken BC as opposite side since it is facing angle A directly and AC as the adjacent;
tan(A) = BC/AC
tan(A) = 24/10
tan(A) = 12/5
The right option is therefore twelve-fifths
Answer:
the surface area of the decoration is 31.5
Step-by-step explanation:
Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
5 | 8 |12
40|35 |103
29|68 |148
65|172|324