Answer:
Paasche's Index= 168.63= 169
Step-by-step explanation:
<em><u>Products</u></em>
<em><u>Base-Period Current Period</u></em>
Quantities Mean Shipping Quantities Mean Shipping
(Year 1) Cost per Unit ($) (Year 5) Cost per Unit ($)
A 1,500 10.50 4000 15.90
B 5,000 16.25 3000 33.00
C 6,500 12.20 8000 18.40
D 2,500 20.00 3000 35.50
Paasche's Index= ∑ pn.qn/∑po.qn* 100
Where pn is the price of the current year and qn is the quantity of the current year and po. is the price of the base year and qo. is the quantity of the base year.
Paasche's Index is the percentage ratio of the aggregate of given period prices weighted by the quantities sold or consumed in the given period to the aggregate of the base period prices weighted by the given period quantities.
Multiplying the current year prices with the current year quantities and the base year price with the current year quantities we get.
Product pn.qn po.qn
A 15.90* 4000 10.50* 4000
= 63600 =42000
B 33.00*3000 16.25 * 3000
= 99000 = 48750
C 18.40* 8000 12.20 *8000
=147200 =97600
D 35.50* 3000 20.00*3000
<u> =</u><u>106500 60,000 </u><u> </u>
<u>∑ 416300 248350 </u>
<u />
Paasche's Index= ∑ pn.qn/∑po.qn= <u> </u>416300/ 248350 *100 = 1.676=1.68= 168.63= 169
<u />
The beaker is holding 5 centiliters.
Answer:
4096π / 5
Step-by-step explanation:
∫∫∫ (x² + y² + z²) dV
In spherical coordinates, x² + y² + z² = r², and dV = r² sin φ dr dθ dφ.
E is the range 0 ≤ r ≤ 4, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.
∫₀ᵖⁱ∫₀²ᵖⁱ∫₀⁴ (r²) (r² sin φ dr dθ dφ)
∫₀ᵖⁱ∫₀²ᵖⁱ∫₀⁴ (r⁴ sin φ) dr dθ dφ
Evaluate the first integral.
∫₀ᵖⁱ∫₀²ᵖⁱ (⅕ r⁵ sin φ)|₀⁴ dθ dφ
∫₀ᵖⁱ∫₀²ᵖⁱ (¹⁰²⁴/₅ sin φ) dθ dφ
¹⁰²⁴/₅ ∫₀ᵖⁱ∫₀²ᵖⁱ (sin φ) dθ dφ
Evaluate the second integral.
¹⁰²⁴/₅ ∫₀ᵖⁱ (θ sin φ)|₀²ᵖⁱ dφ
¹⁰²⁴/₅ ∫₀ᵖⁱ (2π sin φ) dφ
²⁰⁴⁸/₅ π ∫₀ᵖⁱ sin φ dφ
Evaluate the third integral.
²⁰⁴⁸/₅ π (-cos φ)|₀ᵖⁱ
²⁰⁴⁸/₅ π (-cos π + cos 0)
²⁰⁴⁸/₅ π (1 + 1)
⁴⁰⁹⁶/₅ π
Answer:
see below
Step-by-step explanation:
Plot the points on the given graph. The ones that fall in on a solid line at the edge of the doubly-shaded area, or fall in the doubly-shaded area, are part of the solution set.
(0, 4) on the dashed line — not a solution
(-2, 4) on red line in blue area — solution
(0, 5) in doubly-shaded area — solution
(–2, 7) in doubly-shaded area — solution
(–4, 1) in blue area — not a solution
(–1, 1) on red line outside blue area — not a solution
(–1.5, 3.5) in doubly-shaded area — solution