Answer:
r = C / (2pie)
Step-by-step explanation:
C = 2pie x r
divide both sides by 2pie to isolate r
C / (2pie) = r
r = C / (2pie)
Answer:
five degrees:)
Step-by-step explanation:
2 hours= -10
1 hour= half of ten
so you could say -5 or that it drops by five degrees every hour.
hope this helps!
Answer:
$2500 - 2%
$1500 - 4%
Step-by-step explanation:
Say the interest for the $2500 is x, so the interest for the $1500 is x+0.02.
As an equation, they would look like this:
2500x+1500(x+0.02)=110
Now solve
2500+1500x+30=110
4000x=80
x=0.02
That means the interest for the $2500 is 0.02, or 2%, and the interest for the $1500 is 0.04, or 4%.
Answer:
NUMBER 1.)
Step 1
Subtract 3y3y from both sides.
5x=10-3y5x=10−3y
Step 2
Divide both sides by 55.
\frac{5x}{5}=\frac{10-3y}{5}
5
5x
=
5
10−3y
Hint
Undo multiplication by dividing both sides by one factor.
Step 3
Dividing by 55 undoes the multiplication by 55.
x=\frac{10-3y}{5}x=
5
10−3y
Hint
Undo multiplication.
Step 4
Divide 10-3y10−3y by 55.
x=-\frac{3y}{5}+2x=−
5
3y
+2
Hint
Divide.
Solution
x=-\frac{3y}{5}+2x=−5
3y+2
Step-by-step explanation:
NUMBER 2.)
Step 1
Add 4y4y to both sides.
3x=6+4y3x=6+4y
Step 2
The equation is in standard form.
3x=4y+63x=4y+6
Step 3
Divide both sides by 33.
\frac{3x}{3}=\frac{4y+6}{3}
3
3x
=
3
4y+6
Hint
Undo multiplication by dividing both sides by one factor.
Step 4
Dividing by 33 undoes the multiplication by 33.
x=\frac{4y+6}{3}x=
3
4y+6
Hint
Undo multiplication.
Step 5
Divide 6+4y6+4y by 33.
x=\frac{4y}{3}+2x=
3
4y
+2
Hint
Divide.
Solution
x=\frac{4y}{3}+2x= 3
4y+2
<h3>Answer:</h3>
Yes, ΔPʹQʹRʹ is a reflection of ΔPQR over the x-axis
<h3>Explanation:</h3>
The problem statement tells you the transformation is ...
... (x, y) → (x, -y)
Consider the two points (0, 1) and (0, -1). These points are chosen for your consideration because their y-coordinates have opposite signs—just like the points of the transformation above. They are equidistant from the x-axis, one above, and one below. Each is a <em>reflection</em> of the other across the x-axis.
Along with translation and rotation, <em>reflection</em> is a transformation that <em>does not change any distance or angle measures</em>. (That is why these transformations are all called "rigid" transformations: the size and shape of the transformed object do not change.)
An object that has the same length and angle measures before and after transformation <em>is congruent</em> to its transformed self.
So, ... ∆P'Q'R' is a reflection of ∆PQR over the x-axis, and is congruent to ∆PQR.