Answer:
hello your question is incomplete attached is the complete question
answer : 25/2 ( A )
Step-by-step explanation:
using Stokes' Theorem to calculate
F = 5yi + 7xj + 
line y = 5 - 2x
attached below is the remaining part of the solution to the question
Answer:
= 130°
Step-by-step explanation:
Angles subtended at the center by the arcs
and
are ∠HPG and ∠EPF.
Since these angles are the vertical angles both will be equal.
m∠HPG ≅ m∠EPF
3x - 10 = 2x + 10
3x - 2x = 10 + 10
x = 20
Therefore,
= 50°
Similarly
= 50°
In the same way angles subtended at the center will be equal.
m∠EPH ≅ m∠FPG
and 
Since
°



Therefore, measure of arc EH = 130°
I believe the answer is A.
The other values have repeated X values.
It’s BD because it need to be the opposite ray and this one is the opposite ray so yes this is it
Answer:
(a) 0.20
(b) 31%
(c) 2.52 seconds
Step-by-step explanation:
The random variable <em>Y</em> models the amount of time the subject has to wait for the light to flash.
The density curve represents that of an Uniform distribution with parameters <em>a</em> = 1 and <em>b</em> = 5.
So, 
(a)
The area under the density curve is always 1.
The length is 5 units.
Compute the height as follows:


Thus, the height of the density curve is 0.20.
(b)
Compute the value of P (Y > 3.75) as follows:
![P(Y>3.75)=\int\limits^{5}_{3.75} {\frac{1}{b-a}} \, dy \\\\=\int\limits^{5}_{3.75} {\frac{1}{5-1}} \, dy\\\\=\frac{1}{4}\times [y]^{5}_{3.75}\\\\=\frac{5-3.75}{4}\\\\=0.3125\\\\\approx 0.31](https://tex.z-dn.net/?f=P%28Y%3E3.75%29%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7Bb-a%7D%7D%20%5C%2C%20dy%20%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7B5%7D_%7B3.75%7D%20%7B%5Cfrac%7B1%7D%7B5-1%7D%7D%20%5C%2C%20dy%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5By%5D%5E%7B5%7D_%7B3.75%7D%5C%5C%5C%5C%3D%5Cfrac%7B5-3.75%7D%7B4%7D%5C%5C%5C%5C%3D0.3125%5C%5C%5C%5C%5Capprox%200.31)
Thus, the light will flash more than 3.75 seconds after the subject clicks "Start" 31% of the times.
(c)
Compute the 38th percentile as follows:

Thus, the 38th percentile is 2.52 seconds.