Answer:
Find the answers below
Step-by-step explanation:
Using m<X as the reference angle
Opposite YZ = 7
Adjacent XY = 10
Hypotenuse XZ = √149
Using the SOH CAH TOA identity
sinX = opp/hyp
sinX =YZ/XZ
sinX = 7/√149
For cos X
cos X = adj/hyp
cos X =10/√149
Using m<Z as reference angle;
Opposite XY = 10
Adjacent YZ = 7
Hypotenuse XZ = √149
Using the SOH CAH TOA identity
sinZ = opp/hyp
sinZ =10/√149
sinZ = 7/√149
For cos Z
cosZ = 7/√149
Question:
What is the area of the sector? Either enter an exact answer in terms of π or use 3.14 and enter your answer as a decimal rounded to the nearest hundredth.
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete as the values of radius and central angle are not given.
However, I'll answer the question using the attached figure.
From the attached figure, the radius is 3 unit and the central angle is 120 degrees
The area of a sector is calculated as thus;

Where
represents the central angle and r represents the radius
By substituting
and r = 3
becomes



square units
Solving further to leave answer as a decimal; we have to substitute 3.14 for 
So,
becomes

square units
Hence, the area of the sector in the attached figure is
or 9.42 square units
Answer:
143 square meters
Step-by-step explanation:
The surface has a width of 11 meters and a length of 13 meters.
13 x 11 = 143.
Is this correct?
The answer is that the ratio of a to c is 9/5
Answer:
b)37.5
Step-by-step explanation:
the ratio 3:2 is the same as 1.5, so you multiply 1.5 & 25 to get 37.5 units