Ribosomes - Make protein
Golgi Apparatus - Make, process, and package proteins
Nucleus - Stores the DNA and coordinates the cell's activities
Mitochondria - Make energy out of food
Vacuole - Storage for food and water
Lysosome - Contains digestive enzymes that help break down food
Plant cells (only) -
Cell wall - Protection and support
Chloroplast - Uses sunlight to create food using photosynthesis
I hope this helps :)
Answer:
Until recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural circuits - that act as information highways between different areas of the brain. But scientists believed that once a neural circuit was in place, adding any new neurons would disrupt the flow of information and disable the brain’s communication system.
In 1962, scientist Joseph Altman challenged this belief when he saw evidence of neurogenesis (the birth of neurons) in a region of the adult rat brain called the hippocampus. He later reported that newborn neurons migrated from their birthplace in the hippocampus to other parts of the brain. In 1979, another scientist, Michael Kaplan, confirmed Altman’s findings in the rat brain, and in 1983 he found neural precursor cells in the forebrain of an adult monkey.
These discoveries about neurogenesis in the adult brain were surprising to other researchers who didn’t think they could be true in humans. But in the early 1980s, a scientist trying to understand how birds learn to sing suggested that neuroscientists look again at neurogenesis in the adult brain and begin to see how it might make sense. In a series of experiments, Fernando Nottebohm and his research team showed that the numbers of neurons in the forebrains of male canaries dramatically increased during the mating season. This was the same time in which the birds had to learn new songs to attract females.
Why did these bird brains add neurons at such a critical time in learning? Nottebohm believed it was because fresh neurons helped store new song patterns within the neural circuits of the forebrain, the area of the brain that controls complex behaviors. These new neurons made learning possible. If birds made new neurons to help them remember and learn, Nottebohm thought the brains of mammals might too.
Other scientists believed these findings could not apply to mammals, but Elizabeth Gould later found evidence of newborn neurons in a distinct area of the brain in monkeys, and Fred Gage and Peter Eriksson showed that the adult human brain produced new neurons in a similar area.
For some neuroscientists, neurogenesis in the adult brain is still an unproven theory. But others think the evidence offers intriguing possibilities about the role of adult-generated neurons in learning and memory.
if wrong report me
Answer:
Where the cell divides
Explanation:
I think the equator, or equatorial plate, is the midline of the cell where duplicated chromosomes position during mitosis.
The sister chromatids are then pulled apart by the mitotic spindle which pulls one chromatid to one pole and the other chromatid to the opposite pole.
The chromosomes line up neatly end-to-end along the centre (equator) of the cell.
The centrioles are now at opposite poles of the cell with the mitotic spindle fibres extending from them.
The mitotic spindle fibres attach to each of the sister chromatids.
The DNA in the cell is copied in preparation for cell division, this results in two identical full sets of chromosomes?.
Outside of the nucleus? are two centrosomes, each containing a pair of centrioles, these structures are critical for the process of cell division.
Answer:
d) harvesting and threshing both.
Explanation:
Hope it helps you...