Answer:
D.
Explanation:
Translation:
A. make a barbecue
B. organize a picnic
C. swimming in the pool
D. to go skiing
Barbecue is usually a summer activity, so we eliminate that.
It would be too cold for a picnic!
It would be too cold to go swimming, and that's more of a summer thing!
Skiing is a snow activity, and since it is winter, it is likely to know.
Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
Answer:
18.3 kilopascals
Explanation:
We are given that the volume of this container is 0.0372 meters^3, that the mass of water is 4.65 grams, and that the temperature of this water vapor ( over time ) is 368 degrees Kelvins. This is a problem where the ideal gas law is an " ideal " application.
_______________________________________________________
First calculate the number of moles present in the water ( H2O ). Water has a mass of 18, so it should be that n, in the ideal gas law - PV = nRT, is equal to 4 / 18. It is the amount of the substance.
We now have enough information to solve for P in PV = nRT,
P( 0.0372 ) = 4 / 18( 8.314 )( 368 ),
P ≈ 18,276.9
Pressure ≈ 18.3 kilopascals
<u><em>Hope that helps!</em></u>
There are 34 g of oxygen in the container.
We can use the<em> Ideal Gas Law</em> to solve this problem.
But
, so
and

STP is 0 °C and 1 bar, so
