Answer: b) Less dense
Explanation:
Differences in density is one reason objects float or sink.
An object more dense than the fluid in which it is immersed will sink, while objects less dense than the fluid in which it is immersed will float to the surface.
But objects floats at constant level if the density is equal to the density of the fluid in which it is immersed; it neither rises nor sinks in the fluid in this case.
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ
Using the exponential decay model; we calculate "k"
We know that "A" is half of A0
A = A0 e^(k× 5050)
A/A0 = e^(5050k)
0.5 = e^(5055k)
In (0.5) = 5055k
-0.69315 = 5055k
k = -0.0001371
To calculate how long it will take to decay to 86% of the original mass
0.86 = e^(-0.0001371t)
In (0.86) = -0.0001371t
-0.150823 = -0.0001371 t
t = 1100 hours
Answer:
you can do anything if you put your mind to it. Also, school is not everything in life there are amazinng things in life that you need school for. you got this.
Since there is 9.47 x 1021 atoms of copper in 1 gram, and 8.96 grams/cc is the density of copper, then 9.47 x 8.96 =84.85 x 1021 atoms of copper in the one cubic centimeter of copper.