1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
12

A mysterious white powder could be powdered sugar (C12H22O11), cocaine (C17H21NO4), codeine (C18H21NO3), norfenefrine (C8H11NO2)

, or fructose (C6H12O6). When 82 mg of the powder is dissolved in 1.50 mL of ethanol (d = 0.789 g/cm3, normal freezing point −114.6 ∘C, Kf = 1.99 ∘C/m), the freezing point is lowered to −115.5 ∘C. What is the identity of the white powder?

Chemistry
2 answers:
rodikova [14]3 years ago
7 0

Norfenefrine (C₈H₁₁NO₂).

<h3>Further explanation</h3>

We will solve a case related to one of the colligative properties, namely freezing point depression.

The freezing point of the solution is the temperature at which the solution begins to freeze. The difference between the freezing point of the solvent and the freezing point of the solution is called freezing point depression.

\boxed{ \ \Delta T_f = T_f(solvent) - T_f(solution) \ } \rightarrow \boxed{ \ \Delta T_f = K_f \times molality \ }

<u>Given:</u>

A mysterious white powder could be,

  • powdered sugar (C₁₂H₂₂O₁₁) with a molar mass of 342.30 g/moles,
  • cocaine (C₁₇H₂₁NO₄) with a molar mass of 303.35 g/moles,
  • codeine (C₁₈H₂₁NO₃) with a molar mass of 299.36 g/moles,
  • norfenefrine (C₈H₁₁NO₂) with a molar mass of 153.18 g/moles, or
  • fructose (C₆H₁₂O₆) with a molar mass of 180.16 g/moles.

When 82 mg of the powder is dissolved in 1.50 mL of ethanol (density = 0.789 g/cm³, normal freezing point −114.6°C, Kf = 1.99°C/m), the freezing point is lowered to −115.5°C.

<u>Question: </u>What is the identity of the white powder?

<u>The Process:</u>

Let us identify the solute, the solvent, initial, and final temperatures.

  • The solute = the powder
  • The solvent = ethanol
  • The freezing point of the solvent = −114.6°C
  • The freezing point of the solution = −115.5°C

Prepare masses of solutes and solvents.

  • Mass of solute = 82 mg = 0.082 g
  • Mass of solvent = density x volume, i.e., \boxed{ \ 0.789 \ \frac{g}{cm^3} \times 1.50 \ cm^3 = 1.1835 \ g = 0.00118 \ kg  \ }

We must prepare the solvent mass unit in kg because the unit of molality is the mole of the solute divided by the mass of the solvent in kg.

The molality formula is as follows:

\boxed{ \ m = \frac{moles \ of \ solute}{kg \ of \ solvent} \ } \rightarrow \boxed{ \ m = \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

Now we combine it with the formula of freezing point depression.

\boxed{ \ \Delta T_f =  K_f \times \frac{mass \ of \ solute \ (g)}{molar \ mass \ of \ solute \times kg \ of \ solvent} \ }

It is clear that we will determine the molar mass of the solute (denoted by Mr).

We enter all data into the formula.

\boxed{ \ -114.6^0C - (-115.5^0C) = 1.99 \frac{^0C}{m} \times \frac{0.082 \ g}{Mr \times 0.00118 \ kg} \ }

\boxed{ \ 0.9 = \frac{1.99 \times 0.082}{Mr \times 0.00118} \ }

\boxed{ \ Mr = \frac{0.16318}{0.9 \times 0.00118} \ }

We get \boxed{ \ Mr = 153.65 \ }

These results are very close to the molar mass of norfenefrine which is 153.18 g/mol. Thus the white powder is norfenefrine.

<h3>Learn more</h3>
  1. The molality and mole fraction of water brainly.com/question/10861444
  2. About the mass and density of ethylene glycol as an  antifreeze brainly.com/question/4053884
  3. About the solution as a homogeneous mixture  brainly.com/question/637791

Keywords: a mysterious white powder, sugar, cocaine, codeine, norfenefrine, fructose, the solute, the solvent, dissolved, ethanol, normal freezing point, the freezing point depression, the identity

Kaylis [27]3 years ago
7 0

The identity of the white powder is \boxed{\text{norfenefrine}(\text{C}_{8}\text{H}_{11}\text{NO}_{2})} .

Further Explanation:

Colligative properties

These are the properties that depend on the number of solute particles and not on their mass or identities. Following are the four colligative properties:

1. Relative lowering of vapor pressure

2. Elevation in boiling point

3. Depression in freezing point

4. Osmotic pressure

The temperature where a substance in its liquid form is converted into the solid state is known as freezing point. Freezing point depression is a colligative property because it depends on the number of moles of solute particles.

The expression for the freezing point depression is as follows:

\Delta\text{T}_\text{f}=\text{K}_\text{f}\,\text{m}       …… (1)

                                                                                   

Here,

\Delta\text{T}_\text{f} is the depression in freezing point.

\text{K}_\text{f} is the cryoscopic constant.

m is the molality of the solution.

The formula to calculate the density of substance is as follows:

\text{Density of substance}=\dfrac{\text{Mass of substance}}{\text{Volume of substance}}                                                      …… (2)

Rearrange equation (2) for the mass of substance.

\text{Mass of substance}=(\text{Density of substance })(\text{Volume of substance})                                 …… (3)

The volume of the substance is to be converted into  . The conversion factor for this is,

1\,\text{ml}=1\,\text{cm}^3  

Therefore the volume of the substance can be calculated as follows:

\begin{aligned}\text{Volume}&=(1.50\,\text{mL})\left(\frac{1\,\text{cm}^3}{1\,\text{mL}}\right)\\&=1.50\,\text{cm}^3\end{aligned}  

Substitute 1.50\,\text{cm}^3 for the volume of substance and 0.789\,\text{g/gm}^3 for the density of the substance in equation (3) to calculate the mass of solvent.

\begin{aligned}\text{Mass of solvent}&=\left(\dfrac{0.789\,\text{g}}{1\,\text{cm}^3}\right)(1.50\,\text{cm}^3)\\&=1.1835\,\text{g}\end{aligned}  

This mass is to be converted into kg. The conversion factor for this is,

1\,\text{g}=10^{-3}\,\text{kg}  

Therefore the mass of solvent can be calculated as follows:

\begin{aligned}\text{Mass of solvent}&=(1.1835\,\text{g})\left(\dfrac{10^{-3}\,\text{kg}}{1\,\text{g}}\right)\\&=0.0011835\,\text{kg}\end{aligned}  

The mass of solute is to be converted into g. The conversion factor for this is,

 1\,\text{mg}=10^{-3}\,\text{g}

Therefore the mass of solute can be calculated as follows:

\begin{aligned}\text{Mass of solute}&=(82\,\text{mg})\left(\dfrac{10^{-3}\,\text{g}}{1\,\text{g}}\right)\\&=0.082\,\text{g}\end{aligned}  

The freezing point depression can be calculated as follows:

\begin{aligned}\Delta\text{T}_\text{f}&=-114.6\,^\circ\text{C}-(-115.5\,^\circ\text{C})\\&=0.9\,\circ\text{C}\end{aligned}

The formula to calculate the molality of solution is as follows:

\text{Molality of solution}=\dfrac{\text{Amount (mol) of solute}}{\text{Mass (kg) of solvent}}                                                        …… (4)

The formula to calculate the amount of solute is as follows:

\text{Amount of solute}=\dfrac{\text{Mass of solute}}{\text{Molar mass of solute}}                                                              …… (5)

Incorporating equation (5) into equation (4),

\text{Molality of solution}=\dfrac{\text{Mass of solute}}{(\text{Mass of solvent})(\text{Molar mass of solute})}                               …… (6)

Incorporating equation (6) into equation (1),

\Delta\text{T}_\text{f}=\text{k}_\text{f}\left(\dfrac{\text{Mass of solute}}{(\text{Mass of solvent})(\text{Molar mass of solute})}\right)                                           …… (7)

Rearrange equation (7) to calculate the molar mass of solute.

\text{Molar mass of solute}=\dfrac{\text{k}_\text{f}}{\Delta\text{T}_\text{f}}\left(\dfrac{\text{Mass of solute}}{\text{Mass of solvent}}\right)                                                        …… (8)

Substitute 1.99\,^\circ\text{C/m} for \text{k}_\text{f}, 0.9\,^\circ\text{C} for \Delta\text{T}_\text{f}, 0.082 g for the mass of solute and 0.0011835 kg for the mass of solvent in equation (8).

\begin{aligned}\text{Molar mass of solute}&=\left(\dfrac{1.99}{0.9}\right)\left(\dfrac{0.082}{0.0011835}\right)\\&=153.199\,\text{g/mol}\\&=\approx153.2\,\text{g/mol}\end{aligned}  

The molar mass of powdered sugar is 342.3 g/mol.

The molar mass of cocaine is 303.4 g/mol.

The molar mass of codeine is 299.4 g/mol.

The molar mass of norfenefrine is 153.2 g/mol.

The molar mass of fructose is 180.2 g/mol.

The calculated molar mass of solute is similar to that of norfenefrine. So the identity of the white powder is norfenefrine.

Learn more:

  1. What is the concentration of alcohol in terms of molarity? brainly.com/question/9013318
  2. What is the molarity of the stock solution? brainly.com/question/2814870

Answer details:

Grade: Senior School

Chapter: Solutions

Subject: Chemistry

Keywords: colligative properties, depression in freezing point, cryoscopic constant, freezing point, 153.199 g/mol, norfenefrine.

You might be interested in
What term refers to rows of elements
qaws [65]
Period are going left to right across the periodic table
Groups are going up to down on the periodic table
3 0
2 years ago
Read 2 more answers
What molarity of nitric acid (HNO3) was used if 2.00 L must be used to prepare 4.5 L of a 0.25 M HNO3 solution?
Ymorist [56]

The   molarity  of (HNO₃) that was used  if 2.00 L must  be used   to prepare 4.5 L  of a 0.25M HNO₃ solution is   0.563 M


 <u><em>calculation</em></u>

  This is calculated  usind  M₁V₁=M₂V₂  formula

where,

         M₁(  molarity ₁) = ?

         V₁( volume ₁) = 2.00 L

        M₁ (molarity ₂) = 0.25M

         V₂( volume₂) = 4.5 L

make M₁ the subject  of the formula by  diving both side of the formula  by V₁

   M₁  is therefore = M₂V₂/V₁

M₁ =[ (0.25 M  x 4.5 L) / 2.00 L ]  =0.563 M

5 0
2 years ago
Describe the process of convection and how it contributes to seafloor spreading
kobusy [5.1K]

Answer:

Seafloor spreading and other tectonic activity processes are the result of mantle convection. ... Seafloor spreading occurs at divergent plate boundaries. As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense.

8 0
2 years ago
Read 2 more answers
The specific heat capacity of an unknown metal is 0.343 J/(g•°C). Calculate the energy required to raise the temperature of 224
Margarita [4]

Explanation:

the answer and explanation is in the picture

hope this helps

please like and Mark as brainliest

8 0
3 years ago
How many moles are in 3.113 g of Au?Molar mass of Au=197 g/mol
SVEN [57.7K]
<h3>Answer:</h3>

0.0157 g Au

<h3>General Formulas and Concepts:</h3>

<u>Chemistry</u>

<u>Atomic Structure</u>

  • Reading a Periodic Table
  • Using Dimensional Analysis

<u>Math</u>

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right
<h3>Explanation:</h3>

<u>Step 1: Define</u>

3.113 g Au

<u>Step 2: Identify Conversions</u>

Molar Mass of Au - 197.87 g/mol

<u>Step 3: Convert</u>

<u />3.113 \ g \ Au(\frac{1 \ mol \ Au}{197.87 \ g \ Au} ) = 0.015733 g Au

<u>Step 4: Check</u>

<em>We are given 3 sig figs. Follow sig fig rules and round.</em>

0.015733 g Au ≈ 0.0157 g Au

3 0
2 years ago
Other questions:
  • Why do all humans have similar features? A. They have the same number and kinds of chromosomes. B. They have identical alleles.
    12·2 answers
  • When acetic anhydride is dissolved in water, it forms acetic acid according to the balanced chemical reaction shown below. calcu
    5·1 answer
  • How do you solve stoichiometry problems
    14·1 answer
  • Which is the first step in the dissolving process?
    15·1 answer
  • Data for CH3COOH(l) + C2H5OH(l) CH3COOC2H5(l) + H2O(l) balance were obtained at 100. The initial concentrations of the reagents
    7·1 answer
  • 2.
    11·1 answer
  • Which situation has given to a trait that could be passed on to offspring ?
    11·1 answer
  • I need help with this science!
    5·2 answers
  • 3.
    12·1 answer
  • Which layer of Earth is responsible for the movement of tectonic plates?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!