-7=-9+n/8
Add 9 to both sides
2=n/8
Multiply 8 on both sides
Final Answer: 16=n
Answer:
Below in bold.
Step-by-step explanation:
c) 3 x (9^2)^3/4 x ((81^3)^5/6
= 3 x 81^3/4 x 81^15/6
= 3 x 81^(3/4 + 15/6)
= 3 x 81^13/4
= 3 x 3^13
= 3^14
= 4,782,969.
f) (5x^-1y^2)^-2 / (25 x^2 y - 1)^2
= 5^-2 x^2y^-4 / 625 x^4y^-2
= 5^-2 x^-2 y^-2 / 5^4
= 5^-6 x^-2y^-2
= 0.000064x^-2y^-2.
Answer:2 weeks
Step-by-step explanation: if you subtract 1800 by 150 for the two weeks you will get 1500 and if you add 1100 by 200 every week you will get a hundred and fifty
Answer:
V(max) = 8712.07 in³
Dimensions:
x (side of the square base) = 16.33 in
girth = 65.32 in
height = 32.67 in
Step-by-step explanation:
Let
x = side of the square base
h = the height of the postal
Then according to problem statement we have:
girth = 4*x (perimeter of the base)
and
4* x + h = 98 (at the most) so h = 98 - 4x (1)
Then
V = x²*h
V = x²* ( 98 - 4x)
V(x) = 98*x² - 4x³
Taking dervatives (both menbers of the equation we have:
V´(x) = 196 x - 12 x² ⇒ V´(x) = 0
196x - 12x² = 0 first root of the equation x = 0
Then 196 -12x = 0 12x = 196 x = 196/12
x = 16,33 in ⇒ girth = 4 * (16.33) ⇒ girth = 65.32 in
and from equation (1)
y = 98 - 4x ⇒ y = 98 -4 (16,33)
y = 32.67 in
and maximun volume of a carton V is
V(max) = (16,33)²* 32,67
V(max) = 8712.07 in³