891
prime factors number to factorize
3 297
3 99
3 33
3 11
11 1
Therefore, the prime factorization of 891 is 1×3×3×3×3×11= 1×3^4×11, or 1*81*11
Answer:

Step-by-step explanation:
![\sf \frac{3}{a} x - 4 = 20\\\\Add \ 4 \ to \ both \ sides\\\\\frac{3}{a} x = 20+4\\\\\frac{3}{a} x = 24\\\\Multiply \ both \ sides \ by \ a\\\\3x = 24 * a\\\\Divide \ 3 \ to \ both \ sides\\\\x = 24a / 3\\\\x = 8a\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20%5Cfrac%7B3%7D%7Ba%7D%20x%20-%204%20%3D%2020%5C%5C%5C%5CAdd%20%5C%204%20%5C%20to%20%5C%20both%20%5C%20sides%5C%5C%5C%5C%5Cfrac%7B3%7D%7Ba%7D%20x%20%3D%2020%2B4%5C%5C%5C%5C%5Cfrac%7B3%7D%7Ba%7D%20x%20%3D%2024%5C%5C%5C%5CMultiply%20%5C%20both%20%5C%20sides%20%5C%20by%20%5C%20a%5C%5C%5C%5C3x%20%3D%2024%20%2A%20a%5C%5C%5C%5CDivide%20%5C%203%20%5C%20to%20%5C%20both%20%5C%20sides%5C%5C%5C%5Cx%20%3D%2024a%20%2F%203%5C%5C%5C%5Cx%20%3D%208a%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
Step-by-step explanation:
m∠2 = 52° [Alternate interior angles]
m∠1 + m∠2 = 180° [Linear pair of angles are supplementary]
m∠1 = 180° - 52°
m∠1 = 128°
m∠3 = 47° [Alternate interior angles]
m∠5 + 52° + 47° = 180° [Sum of linear angles is 180°]
m∠5 = 180° - 99°
= 81°
m∠4 + 47° = 180° [Sum of consecutive interior angles is 180°]
m∠4 = 180° - 47°
m∠4 = 137°