Answer:
This question is incomplete as it lacks options. However, it can be answered based on general knowledge of the DNA structure.
Hydrogen bonds in a DNA are located between the nucleotides that holds the double stranded DNA molecules.
Explanation:
Deoxyribonucleic acid (DNA) is the genetic material in living cells. The DNA molecule is made up of nucleotides monomers. However, since the DNA molecule is double-stranded, the nucleotides are of two chains composed of four nucleotide subunits viz: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C).
The two chains of nucleotides in a DNA molecule are called strands. Each strand is bonded to one another by the nucleotides using complementary base pairing i.e. A-T, G-C. The bonds between the nucleotidew of each strand is called HYDROGEN BOND.
Hence, HYDROGEN BONDS in a DNA molecule is located in between two nucleotides of each strand. That is, hydrogen bond holds Adenine to Thymine and Guanine to Cytosine.
Options missing:
a) The pH of the environment should be relatively high.
b) The pH of the environment should be relatively low.
c) The pH of the environment would not matter.
d) The environment should be set to the biochemical standard state.
Answer:
a) The pH of the environment should be relatively high.
Explanation:
For optimal function an enzyme needs a certain environment or condition. As temperature increases, the rate of enzyme activity also increases. As temperature increases toward its optimum point of 37 degrees Celsius (98.6 F), hydrogen bonds relax and make it easier for the hydrogen peroxide molecules to bind to the catalase.
The part of the enzyme where this reaction takes place is called the active site. A temperature that is higher or lower than this optimum point changes the shape of the active site and stops the enzyme from working. This process is called denaturation.
Enzyme pH levels also change the shape of the active site and affect the rate of enzyme activity. Each enzyme has its own optimal range of pH in which it works most effectively. In humans, catalase works only between pH 7 and pH 11. If the pH level is lower than 7 or higher than 11, the enzyme becomes denaturated and loses its structure. The liver sustains a neutral pH of about 7, which creates the best environment for catalase and other enzymes.
General acid catalysis would require histidine to be protonated at pH values (pH 8.0) optimal for enzymatic activity which is relatively high.
Just think about cancer.. it's uncontrolled cell growth, so mutations in genes can cause cancer by accelerating cell division. As the cells contribute to grow they then develop as a tumor.
A sperm and an egg cell are each gametes. They fuse to become a zygote cell which develops into a fetus