The bond holding the last phosphate group breaks that is why <span> is the energy that is carried in an ATP molecule released to provide usable energy.</span>
Answer:
The number of positive charges in nucleus of an atoms are equal to the atomic number and also positive charges are equal to the negative charges which are electrons in neutral atom.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Neutron and proton:
Neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
The carbon have six protons and six neutrons so its atomic mass is 12 amu and atomic number is six.
Metalloids are elements that have both metal and nonmetal properties
Answer : La carga nuclear efectiva (Zef) es la carga positiva neta experimentada por un electrón en un átomo polielectrónico. El término "efectiva" se usa porque el efecto pantalla de los electrones más cercanos al núcleo evita que los electrones en orbitales superiores experimenten la carga nuclear completa
Explanation:
Answer:
The temperature of the system once the equilibrium has been reached = 372.55K
Explanation:
Heat capacity of gold = 129 J/Kg*c.
Heat capacity of water
4,184 J/Kg*c.
Mass of gold = 75g = 0.075Kg
Mass of water = 200g = 0.2Kg
From conservation of energy
m1×C1×(t11 - t2) = m2×C2×(t2- t21)
Substituting we have
0.075 × 129×(1000-t2) = 0.2× 4184×( t2 -300) =solving for t2, we have
933.55×t2 = 347790
or t2 = 372.55K
The temperature of the system once the equilibrium has been reached = 372.55K