The reaction between N₂ and F₂ gives Nitrogen trifluoride as the product. The balanced equation is;
N₂ + 3F₂ → 2NF₃
The stoichiometric ratio between N₂ and NF₃ is 1 : 2
Hence,
moles of N₂ / moles of F₂ = 1 / 2
moles of N₂ / 25 mol = 0.5
moles of N₂ = 0.5 x 25 mol = 12.5 mol
Hence N₂ moles needed = 12.5 mol
At STP (273 K and 1 atm) 1 mol of gas = 22.4 L
Hence needed N₂ volume = 22.4 L mol⁻¹ x 12.5 mol
= 280 L
Answer:
The equilibrium will shift left.
Explanation:
Hope this helps <3
Answer:
Benzoic acid is the stronger acid
Explanation:
Weak acids do not dissociate completely in the solution. They exists in equilibrium with their respective ions in the solution.
The extent of dissociation of the acid furnising hydrogen ions can be determined by using dissociation constant of acid (
).
Thus for a weak acid, HA

The
is:
![K_a= \frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)
The more the
, the more the acid dissociates, the more the stronger is the acid.
Also,
is defined as the negative logarithm of
.
So, more the
, less is the
and vice versa
All can be summed up as:
The less the value of
, the more the
is and the more the acid dissociates and the more the stronger is the acid.
Given,
of acetic acid = 54.7
of benzoic acid = 54.2
of benzoic acid <
of acetic acid
So, benzoic acid is the stronger acid.
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases.
Answer:
See explanation
Explanation:
Calcium is divalent. This means that it donates two electrons during ionic bond formation. Since chlorine atom can only accept one electron during ionic bond formation, two chlorine atoms must accept the two electrons donated by calcium.
For this purpose, each time CaCl2 is formed, there must be two chlorine atoms for each calcium atom.