1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
13

Solve for W. 2=LW Nnnnnnnnnnnnnnnnn

Mathematics
2 answers:
Anna11 [10]3 years ago
7 0

Answer: W = 2/L

Isolate the variable by dividing each side by factors that don't contain the variable.

yKpoI14uk [10]3 years ago
7 0
W= 2/L

Is the answer I believe
You might be interested in
Solve the system of equations 10×+7y=99andy-×=2?
djverab [1.8K]
You can use substitution and solve y-x=2 for y which is y= x+ 2 and plug it into the y of the other equasion and you get x=5 y=7
8 0
3 years ago
Drag the tiles to the boxes to form correct pairs.<br> Match the pairs of equivalent expressions.
Rashid [163]

Answer:

The following pairs/results are matched:

  • 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33
  • 3\left(3t-4\right)-\left(2t+10\right) = 7t-22
  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}
  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Step-by-step explanation:

Lets solve all the expressions to match the results.

  • 5\left(2t+1\right)+\left(-7t+28\right)

<em>Solving the expression</em>

5\left(2t+1\right)+\left(-7t+28\right)

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

5\left(2t+1\right)-7t+28

10t+5-7t+28

3t+33

Therefore, 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33

  • 3\left(3t-4\right)-\left(2t+10\right)

<em>Solving the expression</em>

3\left(3t-4\right)-\left(2t+10\right)

9t-12-\left(2t+10\right)

9t-12-2t-10

7t-22

Therefore, 3\left(3t-4\right)-\left(2t+10\right) = 7t-22

  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)

<em>Solving the expression</em>

\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

4t-\frac{8}{5}-\left(3-\frac{4}{3}t\right)

4t-\frac{8}{5}-\left(-\frac{4t}{3}+3\right)

4t-\frac{8}{5}-3+\frac{4t}{3}

As

-3-\frac{8}{5}:\quad -\frac{23}{5}    and  \frac{4t}{3}+4t:\quad \frac{16t}{3}

So,

4t-\frac{8}{5}-3+\frac{4t}{3} will become \frac{16t}{3}-\frac{23}{5}

Therefore, \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}

  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)

<em>Solving the expression</em>

\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

-\frac{9}{2}t+3+\frac{7}{4}t+33

\mathrm{Group\:like\:terms}

\frac{9}{2}t+\frac{7}{4}t+3+33

\mathrm{Add\:similar\:elements:}\:-\frac{9}{2}t+\frac{7}{4}t=-\frac{11}{4}t

-\frac{11}{4}t+3+33

-\frac{11}{4}t+36

Therefore, \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Thus, the following pairs/results are matched:

  • 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33
  • 3\left(3t-4\right)-\left(2t+10\right) = 7t-22
  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}
  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Keywords: algebraic expression

Learn more about algebraic expression from brainly.com/question/11336599

#learnwithBrainly

5 0
3 years ago
Read 2 more answers
I need help I’m bad at math
Alina [70]
If you'd graph this function, you'd see that it's positive on [-1.5,0], and that it's possible to inscribe 3 rectangles on the intervals [-1.5,-1), (-1,-0.5), (-0.5, 1].

The width of each rect. is 1/2.

The heights of the 3 inscribed rect. are {-2.25+6, -1+6, -.25+6} = {3.75,5,5.75}.

The areas of these 3 inscribed rect. are (1/2)*{3.75,5,5.75}, which come out to:

{1.875, 2.5, 2.875}

Add these three areas together; you sum will represent the approx. area under the given curve on the given interval:  1.875+2.5+2.875 = ?
5 0
3 years ago
The perpendicular line of x-6y=2, (2, 4) in slope intercept form
pentagon [3]
The perpendicular line to x-6y=2, and passing through (2, 4) is y=-6x+16
3 0
3 years ago
CALC- limits<br> please show your method
gladu [14]
A. Factor the numerator as a difference of squares:

\displaystyle\lim_{x\to9}\frac{x-9}{\sqrt x-3}=\lim_{x\to9}\frac{(\sqrt x-3)(\sqrt x+3)}{\sqrt x-3}=\lim_{x\to9}(\sqrt x+3)=6

c. As x\to\infty, the contribution of the terms of degree less than 2 becomes negligible, which means we can write

\displaystyle\lim_{x\to\infty}\frac{4x^2-4x-8}{x^2-9}=\lim_{x\to\infty}\frac{4x^2}{x^2}=\lim_{x\to\infty}4=4

e. Let's first rewrite the root terms with rational exponents:

\displaystyle\lim_{x\to1}\frac{\sqrt[3]x-x}{\sqrt x-x}=\lim_{x\to1}\frac{x^{1/3}-x}{x^{1/2}-x}

Next we rationalize the numerator and denominator. We do so by recalling

(a-b)(a+b)=a^2-b^2
(a-b)(a^2+ab+b^2)=a^3-b^3

In particular,

(x^{1/3}-x)(x^{2/3}+x^{4/3}+x^2)=x-x^3
(x^{1/2}-x)(x^{1/2}+x)=x-x^2

so we have

\displaystyle\lim_{x\to1}\frac{x^{1/3}-x}{x^{1/2}-x}\cdot\frac{x^{2/3}+x^{4/3}+x^2}{x^{2/3}+x^{4/3}+x^2}\cdot\frac{x^{1/2}+x}{x^{1/2}+x}=\lim_{x\to1}\frac{x-x^3}{x-x^2}\cdot\frac{x^{1/2}+x}{x^{2/3}+x^{4/3}+x^2}

For x\neq0 and x\neq1, we can simplify the first term:

\dfrac{x-x^3}{x-x^2}=\dfrac{x(1-x^2)}{x(1-x)}=\dfrac{x(1-x)(1+x)}{x(1-x)}=1+x

So our limit becomes

\displaystyle\lim_{x\to1}\frac{(1+x)(x^{1/2}+x)}{x^{2/3}+x^{4/3}+x^2}=\frac{(1+1)(1+1)}{1+1+1}=\frac43
3 0
3 years ago
Other questions:
  • Find the equivalent expression to 3(4m-2) -2(m+5)
    15·1 answer
  • Help me please I really don’t understand:(
    8·1 answer
  • If a system of linear equations has one solution, what is an importan
    9·1 answer
  • Y/4+5/9=y/9-5/9<br><br>solve the equation is it a number or does it not have a solution
    9·1 answer
  • A sample of blood pressure measurements is taken for a group of​ adults, and those values​ (mm Hg) are listed below. The values
    14·1 answer
  • Can you solve for y plz
    7·1 answer
  • Mrs. Fekin bought herself a new water jug. The jug of water holds 64 ounces. If she drinks 4 ounces per hour, after how many hou
    12·1 answer
  • 2.<br> Determine if the function is Odd Even Neither.<br> [6]<br> f(x) = -3x4 + 2x3 – 5x2 + x
    14·1 answer
  • What type of triangle (right, obtuse, acute) do the angles 5,5,5 form?
    12·1 answer
  • The absolute value inequality equation |2x – 1| &gt; 3 will have what type of solution set?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!