1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
11

Gabby left the mall and drove north. Violet left 3 hours later, driving 36 mph faster to catch up with Gabby. After 2 hours, she

caught up with Gabby. Find Gabby’s average speed.
28 mph

72 mph

24 mph

60 mph
Mathematics
1 answer:
Archy [21]3 years ago
7 0

Answer:

24mph

Step-by-step explanation:

24 mph times 5 hours = 120 miles

24 mph + 36 mph = 60 mph

60 mph × 2 hours = 120 miles

You might be interested in
Does any one understand these questions explain if you can.
maw [93]
1) 136 is the circumference of a circle with what area? we know C=πd.
136=πd
136/π=d
d=43.290 so the radius is half that, or
r=21.645
taking area as our measure of size,
A=πr²
A=π•21.645²
A=1471.855. answer C is closest. difference is in how they and I rounded

2) c, e, and f
3 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Which equations represent the line that is perpendicular to the line 5x − 2y = −6 and passes through the point (5, −4)? Select t
nignag [31]

For this case we have that by definition, the equation of a line in the slope-intersection form is given by:

y = mx + b

Where:

m: It's the slope

b: It is the cut-off point with the y axis

On the other hand we have that if two lines are perpendicular, then the product of their slopes is -1. So:

m_ {1} * m_ {2} = - 1

The given line is:

5x-2y = -6\\-2y = -6-5x\\2y = 5x + 6\\y = \frac {5} {2} x + \frac {6} {2}\\y = \frac {5} {2} x + 3

So we have:

m_ {1} = \frac {5} {2}

We find m_ {2}:m_ {2} = \frac {-1} {\frac {5} {2}}\\m = - \frac {2} {5}

So, a line perpendicular to the one given is of the form:

y = - \frac {2} {5} x + b

We substitute the given point to find "b":

-4 = - \frac {2} {5} (5) + b\\-4 = -2 + b\\-4 + 2 = b\\b = -2

Finally we have:

y = - \frac {2} {5} x-2

In point-slope form we have:

y - (- 4) = - \frac {2} {5} (x-5)\\y + 4 = - \frac {2} {5} (x-5)

ANswer:

y = - \frac {2} {5} x-2\\y + 4 = - \frac {2} {5} (x-5)

3 0
3 years ago
Read 2 more answers
The accompanying data came from a study of collusion in bidding within the construction industry. No. Bidders No. Contracts 2 6
viktelen [127]

Answer:

a)

The proportion of contracts involved at most five bidders is 0.667.

The proportion of contracts involved at least five bidders is 0.51.

b)

The  proportion of contracts involved  between five and 10 inclusive bidders is 0.5.

The  proportion of contracts involved  strictly between five and 10 bidders is 0.304.

Step-by-step explanation:

No. bidders    No. contracts     Relative frequency of contracts

2                         6                       6/102=0.0588

3                         20                     20/102=0.1961

4                         24                     24/102=0.2353

5                         18                       18/102=0.1765

6                         13                        13/102=0.1275

7                          7                          7/102=0.0686

8                          5                          5/102=0.049

9                          6                          6/102=0.0588

10                         2                           2/102=0.0196

11                          1                            1/102=0.0098

Total                  102

a)

We have to find proportion of contracts involved at most five bidders.

Proportion of at most 5= Relative frequency 2+ Relative frequency 3+ Relative frequency 4+ Relative frequency 5

Proportion of at most 5=0.0588+ 0.1961+0.2353+0.1765

Proportion of at most 5=0.6667

The proportion of contracts involved at most five bidders is 0.667.

proportion of at least five bidders= proportion≥5= 1- proportion less than 5

Proportion less than 5=0.0588+ 0.1961+0.2353=0.4902

proportion of at least five bidders=1-0.4902=0.5098

The proportion of contracts involved at least five bidders is 0.51

b)

We have to find proportion of contracts involved  between five and 10 inclusive bidders.

Proportion of contracts between five and 10 inclusive= Relative frequency 5+ Relative frequency 6+ Relative frequency 7+ Relative frequency 8+ Relative frequency 9+ Relative frequency 10

Proportion of between five and 10 inclusive=0.1765 +0.1275 +0.0686 +0.049 +0.0588 +0.0196

Proportion of between five and 10 inclusive=0.5

The  proportion of contracts involved  between five and 10 inclusive bidders is 0.5

We have to find proportion of contracts involved  strictly between five and 10 bidders.

Proportion of contracts strictly between five and 10=  Relative frequency 6+ Relative frequency 7+ Relative frequency 8+ Relative frequency 9

Proportion of strictly between five and 10=0.1275 +0.0686 +0.049 +0.0588

Proportion of strictly between five and 10=0.3039

The  proportion of contracts involved  strictly between five and 10 bidders is 0.304.

8 0
3 years ago
Simplify 4( x - 6) ^2 / ( x - 6)​
Leno4ka [110]

Answer:

4x - 24

Step-by-step explanation:

\frac{4(x - 6 {)}^{2} }{(x - 6)}

4(x - 6) = 4x - 4 \times 6 = 4x - 24

4x - 24

5 0
3 years ago
Read 2 more answers
Other questions:
  • Use the function f(x) and g(x); to answer the question. f(x)=x^2+10;g(x)=x-3. which expression is equal to (f+g)(x)?
    8·1 answer
  • The local weather report stated that there’s a 2/3 chance on Friday how likely is it to rain?
    8·1 answer
  • A small aircraft, a, is cruising at an altitude of 1.5 km. The radius of Earth is approximately 6400 km. How far is the plane fr
    6·1 answer
  • Please help me i need an answer
    6·1 answer
  • 5st + 8s +9t -2st + 7t
    15·2 answers
  • Symbols used in linear inequation
    9·1 answer
  • Find the area of the shaded portion below.
    6·2 answers
  • Which expression can be used to find the surface area of the following square pyramid?
    8·2 answers
  • Solve by graphing<br> X+Y=3<br> Y=2x
    15·1 answer
  • hurry xdd A store had apples on sale for $1.20 a pound. Joan spent $5.28 on apples. How many pounds did she buy?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!