If we use our trusty ti's this will be a breeze
domain is the numbers we can use
obviously we can't have negative time so therefor the domain is all positive integers (0,1,2,2.3, 3/2,3,pi...)
zeroes is when you set absolute max using ti is
remember vertex form which is
max height of something in
ax^2+bx+c form is -b/2a
-16t^2+60t+0
a=-16
b=60
-60/(2 times -16)
-60/-32=30/16=15/8=1 and 7/8 so subsitute for t
g(15/8)=-16(15/8)^2+60(15/8)=225/4=56.25=max height
zeroes is when the equation equals 0
so set it to zero
0=-16t^2+60t
factor
0=(-4t)(4x-15)
set each to zero
-4x=0
x=0
4x-15=0
add 15
4x=15
divid 4
x=15/4
so the zeros are t=0 and t=15/4
domain is all the nuumbers that can be used logically for time
logically, we cannot have negative time, so all real positive
[0,∞)
(that means from 0 to infinity includng 0 so 0<span><</span>t<∞))
range is the output
output=height
we find the min height and max height
min=0
max=56.25
so range=0 to 56.25 or
[0,56.25]
max height=56.25 ft (15/8 seconds)
zeroes=0 sec and 15/4 sec
domain=all real positive numbers including zero or [0, ∞)
range=[0,56.25]
The formula is
A=p (1+r)^t
A the amount ones she retires ?
P amount invested 5000
R interest rate 0.05
T time 20 years
A=5,000×(1+0.05)^(20)
A=13,266.49
Given :
- A = {x: 2x² + 3x - 2 = 0 }
- B = {x : x² + 3x - 4 = 0 }
To find :
Solution :-
<u>The </u><u>first </u><u>set </u><u>is </u><u>,</u>
- A ={x : 2x² + 3x - 2 = 0}
<u>Solving</u><u> </u><u>the </u><u>Quadratic</u><u> equation</u><u> </u><u>,</u>
- 2x² + 3x - 2 = 0
- 2x² + 4x - x - 2 = 0
- 2x( x + 2) -1( x + 2 ) = 0
- (2x -1) ( x + 2) = 0
- x = 0.5 , -2
<u>Hence</u><u> </u><u>,</u>
<u>The </u><u>second</u><u> </u><u>set </u><u>is </u><u>,</u>
- B ={ x :x² + 3x - 4 = 0 }
<u>Solving</u><u> the</u><u> Quadratic</u><u> equation</u><u> </u><u>,</u>
- x² + 3x - 4 = 0
- x² + 4x - x - 4 = 0
- x( x + 4)-1 ( x +4) = 0
- (x + 4) ( x -1) = 0
- x = 1 , -4
<u>Hence</u><u> </u><u>,</u>
<u>Now </u><u>,</u>
- A U B = { 0.5 , 1 , 4 , -2}
- A Π B = {∅ }
Since AΠ B is a null set , hence ,
Answer:

Step-by-step explanation:
<h3>

</h3>


<h3>Hope it is helpful....</h3>