They are all the same amount of blocks.
The expression that gives an angle that is coterminal with 300 is 300-720. Two angles are said to be coterminal if when they are drawn in a standard position, their terminal sides are on the same location. The expression gives an angle of 420 where when it is drawn the terminal sides are on the same location with the 300.
Someone asked the same question here before, check it out
![\quad \huge \quad \quad \boxed{ \tt \:Answer }](https://tex.z-dn.net/?f=%5Cquad%20%5Chuge%20%5Cquad%20%5Cquad%20%5Cboxed%7B%20%5Ctt%20%5C%3AAnswer%20%7D)
![\qquad \tt \rightarrow \: x = 3](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20x%20%3D%203)
____________________________________
![\large \tt Solution \: :](https://tex.z-dn.net/?f=%20%5Clarge%20%5Ctt%20Solution%20%20%5C%3A%20%3A%20)
![\qquad \tt \rightarrow \: log_{2}(x - 1) log_{2}(x + 5) = 4](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20log_%7B2%7D%28x%20-%201%29%20%20log_%7B2%7D%28x%20%2B%205%29%20%20%3D%204)
![\qquad \tt \rightarrow \: log_{2} \{(x - 1)(x + 5) \} = 4](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20log_%7B2%7D%20%5C%7B%28x%20-%201%29%28x%20%2B%205%29%20%5C%7D%20%3D%204)
[ log (x) + log (y) = log (xy) ]
![\qquad \tt \rightarrow \: ( x - 1)(x + 5) = {2}^{4}](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%28%20x%20-%201%29%28x%20%2B%205%29%20%3D%20%20%7B2%7D%5E%7B4%7D%20)
![\qquad \tt \rightarrow \: {x}^{2} + 5x - x - 5 = 16](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%205x%20-%20x%20-%205%20%3D%20%2016)
![\qquad \tt \rightarrow \: {x}^{2} + 4x - 5 - 16 = 0](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%204x%20-%205%20-%2016%20%3D%200)
![\qquad \tt \rightarrow \: {x}^{2} + 4x -21 = 0](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%204x%20-21%20%3D%200)
![\qquad \tt \rightarrow \: {x}^{2} + 7x - 3x - 21 = 0](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%207x%20-%203x%20-%2021%20%3D%200)
![\qquad \tt \rightarrow \: x(x + 7) - 3(x + 7) = 0](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%20x%28x%20%2B%207%29%20-%203%28x%20%2B%207%29%20%3D%200)
![\qquad \tt \rightarrow \: (x + 7)(x - 3) = 0](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20%28x%20%2B%207%29%28x%20-%203%29%20%3D%200)
![\qquad \tt \rightarrow \: x = - 7 \: \: or \: \: x = 3](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20x%20%3D%20%20-%207%20%5C%3A%20%20%5C%3A%20or%20%5C%3A%20%20%5C%3A%20x%20%3D%203)
The only possible value of x is 3, since we can't operate logarithm with a negative integer in it.
![\qquad \tt \rightarrow \: x = 3](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20x%20%3D%203)
Answered by : ❝ AǫᴜᴀWɪᴢ ❞
The answer is 2 i hope this helps