Answer:
hx-h2+6
Step-by-step explanation:
First solve the parentheses, do h*x - 2h, then add the +6.
Hope I helped! :D
Answer:
(x, y) = (2, 5)
Step-by-step explanation:
I find it easier to solve equations like this by solving for x' = 1/x and y' = 1/y. The equations then become ...
3x' -y' = 13/10
x' +2y' = 9/10
Adding twice the first equation to the second, we get ...
2(3x' -y') +(x' +2y') = 2(13/10) +(9/10)
7x' = 35/10 . . . . . . simplify
x' = 5/10 = 1/2 . . . . divide by 7
Using the first equation to find y', we have ...
y' = 3x' -13/10 = 3(5/10) -13/10 = 2/10 = 1/5
So, the solution is ...
x = 1/x' = 1/(1/2) = 2
y = 1/y' = 1/(1/5) = 5
(x, y) = (2, 5)
_____
The attached graph shows the original equations. There are two points of intersection of the curves, one at (0, 0). Of course, both equations are undefined at that point, so each graph will have a "hole" there.
3.66666666 but u can round it to the third place
Answer:
x = -4 and x = 5
Step-by-step explanation:
Since
and
both equal to y, we know that the expressions equal to each other. We can write a new equation base on that.

Now we solve the equation.





