The classical bonding model which best explains the bonding in the compound NaH₂PO₄ is Hydrogen bonding.
<h3>What is Classical bonding model ?</h3>
By classical, we mean models that do not take into account the quantum behavior of small particles, notably the electron.
These models generally assume that electrons and ions behave as point charges which attract and repel according to the laws of electrostatics.
Sodium dihydrogen phosphate (NaH₂PO₄) is monoclinic, In which, the four independent hydrogen atoms were located on a difference map; they are involved in four O … O Hydrogen-bonds of length 2.654 (2), 2.589 (2), 2.559 (2), and 2.500 (2) Å.
The short contact (2.500 Å), which is not astride any symmetry element, is of the type O-H … O (asymmetrical).
The distorted coordination polyhedra of the sodium atoms are discussed in the light of recent theories on electrostatic balance.
Hence, the classical bonding model which best explains the bonding in the compound NaH₂PO₄ is Hydrogen bonding.
Laern more about Bonding model here ;
brainly.com/question/26803496
#SPJ1
Answer:
- Sn²⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰
- Ti⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴ 6s² 5d¹⁰
- As⁺³ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
Explanation:
The <em>electron configuration</em> indicates the way the electrons of an atom or ion are structured.<u> In the case of cations</u>, by knowing the electronic configuration of the atom (which is neutral), we can find out the cations' configuration by substracting <em>n</em> outermost electrons, where <em>n</em> is the charge of the cation.
Mg⁰ ⇒ [Ne] 3s² = 1s² 2s² 2p⁶ 3s². Thus
Mg⁺² ⇒ [Ne] = 1s² 2s² 2p⁶.
In a similar fashion, the answers are:
Sn²⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰
K⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶
Al³⁺ ⇒ 1s² 2s² 2p⁶
Ti⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴ 6s² 5d¹⁰
As⁺³ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
The segment of the myocardial conduction framework that has the quickest rate of unconstrained depolarization is the S-A node.Depolarization goes through particular conduction pathways from the S-A hub to the A-V hub. This atrial depolarization happens at a most extreme rate of 0.3 m/sec
Answer:
The density increases.
Explanation:
As you go deeper in depth, pressure increases. Density = mass/volume. The layers beneath us due to pressure get packed to the point of being very dense.