Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation:
Entire muscles are encased in the epimysium. The perimysium, which is connected to the epimysium, separates groups of muscle fibres into fasciculi. Individual muscle fibres are encircled by a delicate network of connective tissue fibres, blood arteries, lymphatic vessels, and nerves called the endomysium.
The collagen fibres of tendons are made of endomysium, perimysium, and epimysium, and they serve as the tissue link between muscles and bones by indirect attachment. Intermittent perimysial junction plates serve as its connection to the perimysium.
The perimysium, which surrounds bundles of muscle fibres, the endomysium, which surrounds individual muscle fibres, and the epimysium, which surrounds the muscle, are the three scale levels at which connective tissue of the muscle may be identified.
To Learn more about epimysium, refer here:
brainly.com/question/28200079
#SPJ4
Answer:
A. Weather.
Explanation:
Usually or average are terms that are often associated with weather conditions.
Weather is the average atmospheric conditions prevalent in a particular place over a short period of time.
When forecasting weather, predictive terms like usually are employed to denote expected weather events
the beak is what keeps most birds alive