So, this is a proportion problem. If we express 75% as a fraction (3/4ths), we have:

Since he won all of his games, we add the number won (x), to the number previously won and divide it by the total games played which is just the previous games played plus the number of current games played, so since he lost no games we still add x to the denominator as well. Solving this gives us:

That x value is 20.
If A = {2, 3, 4, 5} and B = {5, 6, 7, 8}, what is A U B?<br>{2, 3, 4, 5, 6, 7, 8)<br>{5}
Ulleksa [173]
<em>Hey</em><em>!</em><em>!</em><em>!</em><em>!</em>
<em>Here</em><em>'s</em><em> </em><em>you</em><em>r</em><em> </em><em>answer</em><em>:</em>
<em>Sol</em><em>ution</em><em>:</em>
<em>A</em><em>=</em><em>{</em><em>2</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>}</em>
<em>B</em><em>=</em><em>{</em><em>5</em><em>,</em><em>6</em><em>,</em><em>7</em><em>,</em><em>8</em><em>}</em>
<em> </em><em>A</em><em> </em><em>U</em><em> </em><em>B</em><em>=</em><em>{</em><em>2</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>}</em><em> </em><em>U</em><em> </em><em>{</em><em>5</em><em>,</em><em>6</em><em>,</em><em>7</em><em>,</em><em>8</em><em>}</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>{</em><em>2</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>,</em><em>6</em><em>,</em><em>7</em><em>,</em><em>8</em><em>}</em>
<em>In</em><em> </em><em>case</em><em> </em><em>of</em><em> </em><em>Union</em><em>,</em><em>we</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>list</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>elements</em><em> </em><em>which</em><em> </em><em>are</em><em> </em><em>present</em><em> </em><em>in</em><em> </em><em>both</em><em> </em><em>sets</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
The probability that 2 men are selected is 49/144
Probability is the likelihood or chance that an event will occur.
If 7 men and 5 women have applied for job, the total number of people that applied will be 12 people
- Pr(2 men are selected) = 7/12 * 7/12
- Pr(2 men are selected) = 49/144
Hence the probability that 2 men are selected is 49/144
Learn more on probabaility here:brainly.com/question/24756209
To determine the median, we need to set up our numbers from least to greatest, and then place T in later to figure out what T is.
8, 9, 9, 9, 10, 11, 12, 15. Cross out the smallest number with the largest number.
9, 9, 9, 10, 11, 12.
9, 9, 10, 11.
9, 10.
9.5 is our median currently.
Since we need to get a number after 10 to make 10 the median, let's use 12.
8, 9, 9, 9, 10, 11, 12, 12, 15.
9, 9, 9, 10, 11, 12 ,12.
9, 9, 10, 11, 12.
9, 10, 11.
10 is now our median since we inserted 12 into our list.
Your answer is 12.
I hope this helps!