Answer: 0.02
Step-by-step explanation:
OpenStudy (judygreeneyes):
Hi - If you are working on this kind of problem, you probably know the formula for the probability of a union of two events. Let's call working part time Event A, and let's call working 5 days a week Event B. Let's look at the information we are given. We are told that 14 people work part time, so that is P(A) = 14/100 - 0.14 . We are told that 80 employees work 5 days a week, so P(B) = 80/100 = .80 . We are given the union (there are 92 employees who work either one or the other), which is the union, P(A U B) = 92/100 = .92 .. The question is asking for the probability of someone working both part time and fll time, which is the intersection of events A and B, or P(A and B). If you recall the formula for the probability of the union, it is
P(A U B) = P(A) +P(B) - P(A and B).
The problem has given us each of these pieces except the intersection, so we can solve for it,
If you plug in P(A U B) = 0.92 and P(A) = 0.14, and P(B) = 0.80, you can solve for P(A and B), which will give you the answer.
I hope this helps you.
Credit: https://questioncove.com/updates/5734d282e4b06d54e1496ac8
it is so easy
Step-by-step explanation:
can i help you
Heya !
Given expression -

Subtracting 25 both sides ,

Dividing by 3 on both sides ,

Therefore ,
Explanation:
Lets interpret Z with M trials. First we have M trials, each trial can be a success or not. The number of success is called N. Each trial that is a success becomes a trial, and if it is a success it becomes a success for Z. Thus, in order for a trial to be successful, it needs first to be successful for the random variable N (and it is with probability q), and given that, it should be a success among the N trials of the original definition of Z (with probability p).
This gives us that each trial has probability pq of being successful. Note that this probability is pq independently of the results of the other trials, because the results of the trials of both N and the original definition of Z are independent. This shows us that Z is the total amount of success within M independent trials of an experiment with pq probability of success in each one. Therefore, Z has Binomial distribution with parameters pq and M.