1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
15

The yearbook staff receive 75 submissions for yearbook articles. Paul will acceptſ of all submissions. Currently, Paul plans for

the yearbook to have 156
pages.
How many more pages will Paul need to add to the yearbook to have 2 articles on every 13 pages? Show your work and explain your thinking.
Mathematics
1 answer:
Zepler [3.9K]3 years ago
4 0

Answer:

The correct answer is - 332 pages.

Step-by-step explanation:

Given:

number of articles submissions - 75

number of pages in the yearbook on current plan = 156

pages required for two articles = 13 pages.

The number of pages to add = ?

Solution:

1 article takes pages in the yearbook = 13/2

= 6.5

the number of pages required for 75 articles = 75*6.5

= 487.5

The number of pages to add in the yearbook = 487.5 - 156

= 331.5 or 332.

Thus, the correct answer is - 332 pages.

You might be interested in
PLEASE HELP, GOOD ANSWERS GET BRAINLIEST. +40 POINTS WRONG ANSWERS GET REPORTED
MA_775_DIABLO [31]
1. Ans:(A) 123

Given function: f(x) = 8x^2 + 11x
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(8x^2 + 11x)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(8x^2) + \frac{d}{dx}(11x)
=> \frac{d}{dx} f(x) = 2*8(x^{2-1}) + 11
=> \frac{d}{dx} f(x) = 16x + 11

Now at x = 7:
\frac{d}{dx} f(7) = 16(7) + 11

=> \frac{d}{dx} f(7) = 123

2. Ans:(B) 3

Given function: f(x) =3x + 8
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(3x + 8)
=> \frac{d}{dx} f(x) = \frac{d}{dx}(3x) + \frac{d}{dx}(8)
=> \frac{d}{dx} f(x) = 3*1 + 0
=> \frac{d}{dx} f(x) = 3

Now at x = 4:
\frac{d}{dx} f(4) = 3 (as constant)

=>Ans:  \frac{d}{dx} f(4) = 3

3. Ans:(D) -5

Given function: f(x) = \frac{5}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{5}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(5x^{-1})
=> \frac{d}{dx} f(x) = 5*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = -5x^{-2}

Now at x = -1:
\frac{d}{dx} f(-1) = -5(-1)^{-2}

=> \frac{d}{dx} f(-1) = -5 *\frac{1}{(-1)^{2}}
=> Ans: \frac{d}{dx} f(-1) = -5

4. Ans:(C) 7 divided by 9

Given function: f(x) = \frac{-7}{x}
The derivative would be:
\frac{d}{dx} f(x) = \frac{d}{dx}(\frac{-7}{x})
or 
\frac{d}{dx} f(x) = \frac{d}{dx}(-7x^{-1})
=> \frac{d}{dx} f(x) = -7*(-1)*(x^{-1-1})
=> \frac{d}{dx} f(x) = 7x^{-2}

Now at x = -3:
\frac{d}{dx} f(-3) = 7(-3)^{-2}

=> \frac{d}{dx} f(-3) = 7 *\frac{1}{(-3)^{2}}
=> Ans: \frac{d}{dx} f(-3) = \frac{7}{9}

5. Ans:(C) -8

Given function: 
f(x) = x^2 - 8

Now if we apply limit:
\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 8)

=> \lim_{x \to 0} f(x) = (0)^2 - 8
=> Ans: \lim_{x \to 0} f(x) = - 8

6. Ans:(C) 9

Given function: 
f(x) = x^2 + 3x - 1

Now if we apply limit:
\lim_{x \to 2} f(x) = \lim_{x \to 2} (x^2 + 3x - 1)

=> \lim_{x \to 2} f(x) = (2)^2 + 3(2) - 1
=> Ans: \lim_{x \to 2} f(x) = 4 + 6 - 1 = 9

7. Ans:(D) doesn't exist.

Given function: f(x) = -6 + \frac{x}{x^4}
In this case, even if we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

Check:
f(x) = -6 + \frac{x}{x^4} \\ f(x) = -6 + \frac{1}{x^3} \\ f(x) = \frac{-6x^3 + 1}{x^3} \\ Rationalize: \\ f(x) = \frac{-6x^3 + 1}{x^3} * \frac{x^{-3}}{x^{-3}} \\ f(x) = \frac{-6x^{3-3} + x^{-3}}{x^0} \\ f(x) = -6 + \frac{1}{x^3} \\ Same

If you apply the limit, answer would be infinity.

8. Ans:(A) Doesn't Exist.

Given function: f(x) = 9 + \frac{x}{x^3}
Same as Question 7
If we try to simplify it algebraically, there would ALWAYS be x power something (positive) in the denominator. And when we apply the limit approaches to 0, it would always be either + infinity or -infinity. Hence, Limit doesn't exist.

9, 10.
Please attach the graphs. I shall amend the answer. :)

11. Ans:(A) Doesn't exist.

First We need to find out: \lim_{x \to 9} f(x) where,
f(x) = \left \{ {{x+9, ~~~~~x \textless 9} \atop {9- x,~~~~~x \geq 9}} \right.

If both sides are equal on applying limit then limit does exist.

Let check:
If x \textless 9: answer would be 9+9 = 18
If x \geq 9: answer would be 9-9 = 0

Since both are not equal, as 18 \neq 0, hence limit doesn't exist.


12. Ans:(B) Limit doesn't exist.

Find out: \lim_{x \to 1} f(x) where,

f(x) = \left \{ {{1-x, ~~~~~x \textless 1} \atop {x+7,~~~~~x \textgreater 1} } \right. \\ and \\ f(x) = 8, ~~~~~ x=1

If all of above three are equal upon applying limit, then limit exists.

When x < 1 -> 1-1 = 0
When x = 1 -> 8
When x > 1 -> 7 + 1 = 8

ALL of the THREE must be equal. As they are not equal. 0 \neq 8; hence, limit doesn't exist.

13. Ans:(D) -∞; x = 9

f(x) = 1/(x-9).

Table:

x                      f(x)=1/(x-9)       

----------------------------------------

8.9                       -10

8.99                     -100

8.999                   -1000

8.9999                 -10000

9.0                        -∞


Below the graph is attached! As you can see in the graph that at x=9, the curve approaches but NEVER exactly touches the x=9 line. Also the curve is in downward direction when you approach from the left. Hence, -∞,  x =9 (correct)

 14. Ans: -6

s(t) = -2 - 6t

Inst. velocity = \frac{ds(t)}{dt}

Therefore,

\frac{ds(t)}{dt} = \frac{ds(t)}{dt}(-2-6t) \\ \frac{ds(t)}{dt} = 0 - 6 = -6

At t=2,

Inst. velocity = -6


15. Ans: +∞,  x =7 

f(x) = 1/(x-7)^2.

Table:

x              f(x)= 1/(x-7)^2     

--------------------------

6.9             +100

6.99           +10000

6.999         +1000000

6.9999       +100000000

7.0              +∞

Below the graph is attached! As you can see in the graph that at x=7, the curve approaches but NEVER exactly touches the x=7 line. The curve is in upward direction if approached from left or right. Hence, +∞,  x =7 (correct)

-i

7 0
3 years ago
Read 2 more answers
Dexter runs around a track at 10 laps in 20 minutes. How many laps per minute is that?
IRINA_888 [86]

Answer:

2

Step-by-step explanation:

20/10=2

5 0
3 years ago
Read 2 more answers
What is the highest number known to man
dimaraw [331]

Answer:

Infinity

Step-by-step explanation:

You cannot go higher than this

7 0
3 years ago
Read 2 more answers
Help soon!!! tysm!!!
victus00 [196]

Answer:

36-b  ^ { 2  }  -c  ^ { 2  }  +2bc\\36-\left(b^{2}+c^{2}-2bc\right) \\6^{2}-\left(b-c\right)^{2} \\\boxed{\left(6-b+c\right)\left(6+b-c\right) }

Hope it helps ⚜

7 0
2 years ago
A cell phone company has a basic monthly plan of $40 plus $0.45 for any minutes used over 700.Before receiving his statement,Joh
Dimas [21]
0.45M+40

The M stands for the amount of minutes he went over.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose f(x) = x³ . find the graph of f(x+5)
    14·2 answers
  • The cost of a movie ticket is $5. it costs a group of friends $105 to go to the movies. which equation describes the number of p
    6·1 answer
  • A standard size can of Diet Coke holds 71.79 cubic inches of soda. The can measure 4.87 inches in height. Determine the diameter
    13·1 answer
  • 4. which algebraic expression is a polynomial with a degree of 2? 4x3 − 2x 10x2 − 8x3 3 6x2 − 6x 5
    10·2 answers
  • Problem is attached, please simplify
    12·1 answer
  • What is <img src="https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D%20%2A%2081" id="TexFormula1" title="\frac{2}{3} * 81" alt="\frac
    11·1 answer
  • Find the equation of the exponential function represented by the table below:<br><br> y=
    6·1 answer
  • Exponential and Alogarithmic Functions - Alegebra question
    7·1 answer
  • Simplify: l 120-x l if x&lt;120
    13·1 answer
  • Solve the following problem:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!