Step-by-step explanation:
this is the answer
the quadrilateral thus formed is parallelogram
A, B and D are already rational numbers, 0.4 itself is a rational number, two rational numbers make a product of rational number.
So A, B, D are the correct choices.
Are you sure it asks for rational numbers, not irrational number?
Answer with Step-by-step explanation:
The given differential euation is
![\frac{dy}{dx}=(y-5)(y+5)\\\\\frac{dy}{(y-5)(y+5)}=dx\\\\(\frac{A}{y-5}+\frac{B}{y+5})dy=dx\\\\\frac{1}{100}\cdot (\frac{10}{y-5}-\frac{10}{y+5})dy=dx\\\\\frac{1}{100}\cdot \int (\frac{10}{y-5}-\frac{10}{y+5})dy=\int dx\\\\10[ln(y-5)-ln(y+5)]=100x+10c\\\\ln(\frac{y-5}{y+5})=10x+c\\\\\frac{y-5}{y+5}=ke^{10x}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%28y-5%29%28y%2B5%29%5C%5C%5C%5C%5Cfrac%7Bdy%7D%7B%28y-5%29%28y%2B5%29%7D%3Ddx%5C%5C%5C%5C%28%5Cfrac%7BA%7D%7By-5%7D%2B%5Cfrac%7BB%7D%7By%2B5%7D%29dy%3Ddx%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%28%5Cfrac%7B10%7D%7By-5%7D-%5Cfrac%7B10%7D%7By%2B5%7D%29dy%3Ddx%5C%5C%5C%5C%5Cfrac%7B1%7D%7B100%7D%5Ccdot%20%5Cint%20%28%5Cfrac%7B10%7D%7By-5%7D-%5Cfrac%7B10%7D%7By%2B5%7D%29dy%3D%5Cint%20dx%5C%5C%5C%5C10%5Bln%28y-5%29-ln%28y%2B5%29%5D%3D100x%2B10c%5C%5C%5C%5Cln%28%5Cfrac%7By-5%7D%7By%2B5%7D%29%3D10x%2Bc%5C%5C%5C%5C%5Cfrac%7By-5%7D%7By%2B5%7D%3Dke%5E%7B10x%7D)
where
'k' is constant of integration whose value is obtained by the given condition that y(2)=0\\

Thus the solution of the differential becomes

Answer:
I'm leaning mostly towards C Because there is a solution, None of them are real numbers and if they were, S would = 5 Especially positive S
~ Zachary