
<u>the </u><u>given </u><u>expression</u><u> </u><u>can </u><u>be </u><u>solved </u><u>as </u><u>follows </u><u>~</u>

<u>taking </u><u>LCM </u><u>both </u><u>the </u><u>sides </u><u>,</u>

<u>on </u><u>cross </u><u>multiplying </u><u>,</u>

<u>let's</u><u> </u><u>now </u><u>gather </u><u>the </u><u>like </u><u>terms </u><u>at </u><u>either </u><u>sides </u><u>of </u><u>the </u><u>equation</u><u> </u><u>~</u>

<u>on </u><u>simplifying </u><u>the </u><u>equation</u><u> </u><u>,</u>

hope helpful ~
Answer:
0.45
Step-by-step explanation:
Using the x and y slope formula you divide then get 0.45
The answer would be 25 because 25 times 2 is 50
1, because 1 1/3 is only 1/3, or 0.3 recurring, away from 1, but it is 2/3, or 0.6 recurring, away from 2.
Answer:
3n + 3
Step-by-step explanation:
Mia is correct
When n= 1 , 3n + 3 = 3*1 + 3 = 3 + 3 = 6
When n =2, 3n + 3 = 3*2 + 3 = 6 + 3 = 9
When n = 3 , 3n +3 = 3*3 + 3 = 9 + 3 = 12
When n = 4, 3n + 3 = 3*4 + 3 = 12 +3 = 15