Answer:
$13564
Step-by-step explanation:



Mary’s taxable income= $68,562
From the table, If taxable income is over $31,850 but not over $77,100
The tax = $4386.25 + 25% of the amount over 31,850
Amount over $31,850=$68,562-$31,850
=$36,712
Therefore:
Mary's tax = $4386.25 + (25% of $36,712)
=$4386.25 +9,178
=$13564.25
=$13564 (to the nearest dollar)
Answer:
23.9894949495cm is the depth of the container.
Step-by-step explanation:
Cylindrical container:
height: 28
radius: 9 (or 18/2)
pi * 9² = 254.4690049408
254.4690049408 * 28 = 7,125.1321383424 cm²
cylidrical container area: 7,125.1321383424cm²
Container:
length: 27cm
width: 11cm
27 * 11 = 297
7,125.1321383424 / 297 = 23.9894949495cm
I assume that the container with rectangular base is precisely full when tou pour the water into it.
And that your question was how deep the container was.
The system of inequalities are
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) 14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
3) 8 hours babysitting, 7 hours dishwashing
Step-by-step explanation:
The given parameters are;
The amount per hour Janine makes from babysits = $14.50
The amount per hour Janine makes from dishwashing = $9.50
The minimum number of hours Janine can spend dishwashing = 7 hours
The maximum number of hours Janine can spend dishwashing = 10 hours
The maximum number of hours Janine can work each week = 7 hours
The minimum amount she wants to make each week = $140
Let x represent the number of hours Janine spends babysitting and let y represent the number of hours Janine spends dishwashing
1) From the question, we have;
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) Where
14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
Making, y, the subject of the formula of the above inequalities and plotting as functions is given as follows;
y ≥ 140/9.5 - (14.5/9.5)·x
y ≤ 15 - x
3) In order to earn as much money as possible given that the amount Janine earns from babysitting is more than the amount she earns from dishwashing, Janine should spend the least amount of time dishwashing, which is 7 hours, as given, and then spend the remaining 8 hours babysitting to receive $14.5 × 8 + $9.5×7 = $182.5