The number of cans is proportional to the number of days, because each day it uses 2 c
Graph it on Desmos, you'll find a match.
you need to find how much the output changes for each unit change in the input. (ie from an input change from 5 to 6 the output changes by three units and an input change of 3 (2 - 5 ) units the output changes by 9 units). This will give you the gradient of the equation. then you have to find out the y intercept by finding what the output is when the input is 0. Do this by multiplying the input by the gradient and then subtracting it from that inputs output. This will give you the answer A) 3x
(Sorry, its a bit wordy :) )

Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;