Answer:
Standard deviation, means, skewness and kurtosis.
Step-by-step explanation:
Two normal curves may be same but they have different means, standard deviation and skewness. There can be different standard deviation for two curves and there is difference in skewness.
Ans(a):
Given function is 
we know that any rational function is not defined when denominator is 0 so that means denominator x+4 can't be 0
so let's solve
x+4≠0 for x
x≠0-4
x≠-4
Hence at x=4, function can't have solution.
Ans(b):
We know that vertical shift occurs when we add something on the right side of function so vertical shift by 4 units means add 4 to f(x)
so we get:
g(x)=f(x)+4

We may simplify this equation but that is not compulsory.
Comparision:
Graph of g(x) will be just 4 unit upward than graph of f(x).
Ans(e):
To find value of x when g(x)=8, just plug g(x)=8 in previous equation





4x-3x=-1-16
x=-17
Hence final answer is x=-17
Answer:

Step-by-step explanation:
![\sf 2x + 4(7-x) \\\\Resolving \ Parenthesis\\\\2x + 28-4x \\\\Combining\ like\ terms\\\\2x-4x +28\\\\-2x + 28\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%202x%20%2B%204%287-x%29%20%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C2x%20%2B%2028-4x%20%5C%5C%5C%5CCombining%5C%20like%5C%20terms%5C%5C%5C%5C2x-4x%20%2B28%5C%5C%5C%5C-2x%20%2B%2028%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf \\12x-(4+2x)\\\\12x-4-2x\\\\Combining \ like \ terms\\\\12x-2x - 4\\\\10x-4 \\\\\rule[22]{225}{2} \\2(10-x)+3(12-x) \\\\Resolving \ Parenthesis\\\\20-2x + 36 -3x\\\\Combining \ like \ terms\\\\20+36 -2x-3x\\\\56 - 5x \\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20%5C%5C12x-%284%2B2x%29%5C%5C%5C%5C12x-4-2x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C12x-2x%20-%204%5C%5C%5C%5C10x-4%20%5C%5C%5C%5C%5Crule%5B22%5D%7B225%7D%7B2%7D%20%5C%5C2%2810-x%29%2B3%2812-x%29%20%5C%5C%5C%5CResolving%20%5C%20Parenthesis%5C%5C%5C%5C20-2x%20%2B%2036%20-3x%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C20%2B36%20-2x-3x%5C%5C%5C%5C56%20-%205x%20%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
![\sf 7(x-1)-6(x+1)\\\\Resolving \ Parethesis\\\\7x-7-6x-6\\\\Combining \ like \ terms\\\\7x-6x-7-6\\\\x - 13\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%207%28x-1%29-6%28x%2B1%29%5C%5C%5C%5CResolving%20%5C%20Parethesis%5C%5C%5C%5C7x-7-6x-6%5C%5C%5C%5CCombining%20%5C%20like%20%5C%20terms%5C%5C%5C%5C7x-6x-7-6%5C%5C%5C%5Cx%20-%2013%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
~AnonymousHelper1807
Answer:
40
Step-by-step explanation:
step 1: (-4)^2=16
step2: 12X2=24
step3: 16+24+40
Ps: when you do a math that involves both addition and multiplication,
we should do multiplication and then addition
Answer:
B=![\left[\begin{array}{ccc}0&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let's do the multiplication AB.
If A=![\left[\begin{array}{ccc}1&0\\0&0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%260%5C%5C%5Cend%7Barray%7D%5Cright%5D)
then the first row of A is= (1 0) by the first column of B= (0 0) is equal to zero.
the first row of A is= (1 0) by the second column of B= (0 1) is equal to zero too because 1.0+0.1=0.
the second row of A is= (0 0) by any colum of B is equal to zero too.
So we have found an example that works!