3. <span>The second piston will experience the same force as compared with the first. This is because since the </span>pressure is the same everywhere inside the fluid system,<span> the force is proportional to the surface area. We are told that both the first and the second piston have the same surface area, therefore, they will both experience the same force/pressure.
4. </span>The situation is much the same as number 3 above, with the exception that the second piston is twenty times larger than the first. Again, since the pressure is the same everywhere inside the fluid system, the force is proportional to the surface area. We are told that the second piston is 20 times larger than the first, therefore, the larger piston will experience 20 times larger the force of the small one.
6. The answer is TRUE. The <span>hydraulic </span>braking system<span> of most cars makes use of a vacuum servo (or booster), which is located between the </span>brake pedal<span> and the master cylinder piston. </span><span>This vacuum servo amplifies the force applied </span><span>from the </span>brake pedal<span>.</span>
The answer would be a positive charge
Answer:
Local action is removed by amalgamating zinc rod.
Explanation:
This prevents chemical reaction to occur because impurities in the zinc cannot get into contact with an electrolyte.
Since the bag was at rest, its initial momentum is zero. The velocity of the ball before collision is 500 ms-1.
<h3>Linear momentum</h3>
The term momentum in physics refers the product of mass and velocity. If we know mass of the object and its velocity, then we calculate the momentum.
Momentum before collision for the bullet = 0.01 kg × v
Momentum before collision for the bag = 0
Momentum after collision for the bag and bullet = (0.01 kg + 0.49 kg) 10 = 5 Kgms-1
The velocity of the bullet before collision = 0.01 kg × v + 0 = 5 Kgms-1
v = 5 Kgms-1/0.01 kg
v = 500 ms-1
Learn more about momentum: brainly.com/question/904448