Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Answer:
∆PE = 749.7 J
At 0.9 m high, PE = 793.8 J
At 1.75 m high, PE = 1543.5 J
Answer:
The speed of the two cars after coupling is 0.46 m/s.
Explanation:
It is given that,
Mass of car 1, m₁ = 15,000 kg
Mass of car 2, m₂ = 50,000 kg
Speed of car 1, u₁ = 2 m/s
Initial speed of car 2, u₂ = 0
Let V is the speed of the two cars after coupling. It is the case of inelastic collision. Applying the conservation of momentum as :


V = 0.46 m/s
So, the speed of the two cars after coupling is 0.46 m/s. Hence, this is the required solution.