Answer:(10.69, 11.436)
Explanation:
Given
initial height of ball is 2 m
height of basket is 3.05 m
Launching angle

y=1.05
equation of trajectory of ball is given by

for x=12.27

u=10.69
for x=11.73

u=11.436 m/s
Thus range of speed is (10.69, 11.436)
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
The answer is C. in sort of a way. You can't technically see black matter. However, it is holding the galaxies together.
D is the point where the planet moves the fastest. This is because it is in the perihelion, where the planet is moving at it’s fastest pace