Notice that
11/12 = 1/6 + 3/4
so that
tan(11π/12) = tan(π/6 + 3π/4)
Then recalling that
sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
⇒ tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) tan(y))
it follows that
tan(11π/12) = (tan(π/6) + tan(3π/4))/(1 - tan(π/6) tan(3π/4))
tan(11π/12) = (1/√3 - 1)/(1 + 1/√3)
tan(11π/12) = (1 - √3)/(√3 + 1)
tan(11π/12) = - (√3 - 1)²/((√3 + 1) (√3 - 1))
tan(11π/12) = - (4 - 2√3)/2
tan(11π/12) = - (2 - √3) … … … [A]
Question: Given that BE bisects ∠CEA, which statements must be true? Select THREE options.
(See attachment below for the figure)
m∠CEA = 90°
m∠CEF = m∠CEA + m∠BEF
m∠CEB = 2(m∠CEA)
∠CEF is a straight angle.
∠AEF is a right angle.
Answer:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
Step-by-step explanation:
Line AE is perpendicular to line CF, which is a straight line. This creates two right angles, <CEA and <AEF.
Angle on a straight line = 180°. Therefore, m<CEA + m<AEF = m<CEF. Each right angle measures 90°.
Thus, the three statements that must be TRUE are:
m∠CEA = 90°
∠CEF is a straight angle.
∠AEF is a right angle
I think the best answer is d since 18x + 16x
Answer:
n - (-6) < 9
n < 3
Step-by-step explanation:
When setting up an inequality, using the key words from the problem will help. The word 'difference' would indicate subtraction and 'less than' would be the '<' inequality sign. Since the expression is 'the difference of a number and -6', we write:
n - (-6) < 9
Whenever we subtract a negative number, we change both signs to positive:
n + 6 < 9
Using inverse operations to solve: n + 6 - 6 < 9 - 6
n < 3
The three geometric means between 3 and 512 are…
8, 32, 128
OR
-8, 32, -128