16, this is the only one of these numbers that is even
hope this helps. gl!
<h3>Answers: </h3>
Angle 1 and 3: Vertical Angles
Angle 4 and 8: Corresponding Angles
Angles 4 and 6: Alternate Interior Angles
Angles 3 and 5: Alternate Interior Angles
Angles 7 and 8: Linear Pair
Angles 1 and 7: Alternate Exterior Angles
=================================================
Explanation:
Vertical angles are formed when you cross two lines to form an X shape. The vertical angles are opposite one another in this configuration.
Corresponding angles are ones that show up in the same corner of each four-corner crossing. In the case of angles 4 and 8, both are in the southwest corner of each four-corner crossing.
Alternate interior angles are angles in between parallel lines and on opposite sides of a transversal. Alternate exterior angles are similar, but they are outside the parallel lines.
A linear pair of angles are adjacent and supplementary (meaning they add to 180).
i)On z, define a∗b=a−b
here aϵz
+
and bϵz
+
i.e.,a and b are positive integers
Let a=2,b=5⇒2∗5=2−5=−3
But −3 is not a positive integer
i.e., −3∈
/
z
+
hence,∗ is not a binary operation.
ii)On Q,define a∗b=ab−1
Check commutative
∗ is commutative if,a∗b=b∗a
a∗b=ab+1;a∗b=ab+1=ab+1
Since a∗b=b∗aforalla,bϵQ
∗ is commutative.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(ab+1)∗c=(ab+1)c+1=abc+c+1
a∗(b∗c)=a∗(bc+1)=a(bc+1)+1=abc+a+1
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
iii)On Q,define a∗b=
2
ab
Check commutative
∗ is commutative is a∗b=b∗a
a∗b=
2
ab
b∗a=
2
ba
=
2
ab
a∗b=b∗a∀a,bϵQ
∗ is commutativve.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=
2
(
2
ab
)∗c
=
4
abc
(a∗b)∗c=a∗(b∗c)=
2
a×
2
bc
=
4
abc
Since (a∗b)∗c=a∗(b∗c)∀a,b,cϵQ
∗ is an associative binary operation.
iv)On z
+
, define if a∗b=b∗a
a∗b=2
ab
b∗a=2
ba
=2
ab
Since a∗b=b∗a∀a,b,cϵz
+
∗ is commutative.
Check associative.
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(2
ab
)
∗
c=2
2
ab
c
a∗(b∗c)=a∗(2
ab
)=2
a2
bc
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
v)On z
+
define a∗b=a
b
a∗b=a
b
,b∗a=b
a
⇒a∗b
=b∗a
∗ is not commutative.
Check associative
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(a
b
)
∗
c=(a
b
)
c
a∗(b∗c)=a∗(2
bc
)=2
a2
bc
eg:−Leta=2,b=3 and c=4
(a∗b)
∗
c=(2∗3)
∗
4=(2
3
)
∗
4=8∗4=8
4
a∗(b∗c)=2
∗
(3∗4)=2
∗
(3
4
)=2∗81=2
81
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
vi)On R−{−1}, define a∗b=
b+1
a
Check commutative
∗ is commutative if a∗b=b∗a
a∗b=
b+1
a
b∗a=
a+1
b
Since a∗b
=b∗a
∗ is not commutatie.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(
b+1
a
)
∗
c=
c
b
a
+1
=
c(b+1)
a
a∗(b∗c)=a∗(
c+1
b
)=
c+1
b
a
=
b
a(c+1)
Since (a∗b)∗c
=a∗(b∗c)
∗ is not a associative binary operation
Answer:
a) 293 units
b) £57.95
Step-by-step explanation:
a)
New reading: 6538 units
Old reading
: 6245 units
The amount use is the difference between the two readings.
6538 - 6245 = 293
Answer: 293 units
b)
293 is the same as 200 units plus another 93 units.
The first 200 units are charged at 22p per unit
Cost of the first 200 units: 200 units * 22p/unit = 4400p
Remaining units are charged at 15p per unit
Cost of the additional 93 units: 93 units * 15p/unit = 1395p
Total charge: 4400p + 1395p = 5795p = £57.95
Answer: £57.95