Condition (A) P(B/A) = y is true.
<h3>
What is probability?</h3>
- Probability is an area of mathematics that deals with numerical descriptions of how probable an event is to occur or how likely a statement is to be true.
To find the true condition:
If two events are independent, then:
Use formulas for conditional probabilities:
- Pr(A/B) = Pr(A∩B) / Pr(B)
- Pr(B/A) = Pr(B∩A) / Pr(A)
For independent events these formulas will be:
- Pr(A/B) = Pr(A∩B) / Pr(B) = Pr(A) . Pr(B) / Pr(B) = Pr(A)
- Pr(B/A) = Pr(B∩A) / Pr(A) = Pr(B) . Pr(A) / Pr(A) = Pr(B)
Now in your case, Pr(A) = x and Pr(B) = y.
- Pr(A/B) = x, Pr(B/A) = y, Pr(A∩B) = x.y
Therefore, condition (A) P(B/A) = y is true.
Know more about probability here:
brainly.com/question/25870256
#SPJ4
The complete question is given below:
The probability of event A is x, and the probability of event B is y. If the two events are independent, which of these conditions must be true?
a. P(B|A) = y
b. P(A|B) = y
c. P(B|A) = x
d. P(A and B) = x + y
e. P(A and B) = x/y
Answer:
They give you the answer just keep going until you get the same answer or use the inverse of what they did
Step-by-step explanation:
A= bh divide by 2 so you'll multiply 10x8 the product would be 80 and so you divide 80 by 2 and get 40 as your result.
tan2x*cotx - 3 = 0
We know that: tan2x = sin2x/cos2x and cotx = cosx/sinx
==> sin2x/cos2x *cosx/sinx = 3
Now we know that sin2x = 2sinx*cosx
==> 2sinxcosx/cos2x * cosx/sinx = 3
Reduce sinx:
==> 2cos^2 x/ cos2x = 3
Now we know that cos2x = 2cos^2 x-1
==> 2cos^2 x/(2cos^2 x -1) = 3
==> 2cos^2 x = 3(2cos^2 x -1)
==> 2cos^2 x = 6cos^2 x - 3
==> -4cos^2 x= -3
==> 4cos^2 x = 3
==> cos^2 x = 3/4
==> cosx = +-sqrt3/ 2
<span>==> x = pi/6, 5pi/6, 7pi/6, and 11pi/6</span>