Answer:
Step-by-step explanation:
Gym A has a $150 joining fee and costs $35 per month.
Assuming that Casey wants to attend for x months, the cost of using gym A will be
150 + 35 times x months. It becomes
150 + 35x
Gym B has no joining fee and costs $60 per month.
Again, assuming that Casey wants to attend for x months, the cost of using gym B will be
60 × x months = 60x
A) To determine the number of months that it will both gym memberships to be the same, we will equate them.
150 + 35x = 60x
60x - 35x = 150
25x = 150
x = 150/25 = 6
It will take 6 months for both gym memberships to be the same.
B) If Casey plans to only go to the gym for 5 months,
Plan A will cost 150 + 35×5 = $325
Plan B will cost 60 × 5 = $300
Plan B will be cheaper
9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.
miles per gallon (x) = d/g
x = 476/14 = x = 34 miles per gallon
so d/x = g
578/34 = 17 gallons are needed
Answer:
b and d
Step-by-step explanation:
5 1/2 miles
2+2= 4
3/4+3/4= 1 2/4 simplify = 1 1/2
1 1/2+ 4=5 1/2