Hehe, these are fun to do. There are two ways to do this kind of problem. You can use the pythagorean theorem or we can use the distance formula.
Distance formula:
Pythagorean Theorem:
![a^2+b^2=c^2](https://tex.z-dn.net/?f=a%5E2%2Bb%5E2%3Dc%5E2)
Distance formula is better if you're finding distance between two
coordinates. The Pythagorean Theorem only really works for independent values. If I had 2 sides of a triangle, and I needed to find the third, I'd use this equation to find it. In this case, we'll use the distance formula.
I'll work the first one out for you:
x1 y1 x2 y2
(3, 2) & (7, 4)![d= \sqrt{(7-3)^2+(4-2)^2}](https://tex.z-dn.net/?f=d%3D%20%5Csqrt%7B%287-3%29%5E2%2B%284-2%29%5E2%7D%20)
v
![d= \sqrt{(4)^2+(2)^2}](https://tex.z-dn.net/?f=d%3D%20%5Csqrt%7B%284%29%5E2%2B%282%29%5E2%7D)
v
![d= \sqrt{(16+4}](https://tex.z-dn.net/?f=d%3D%20%5Csqrt%7B%2816%2B4%7D)
v
![d= \sqrt{20}](https://tex.z-dn.net/?f=d%3D%20%5Csqrt%7B20%7D)
There's your answer!
<em>
</em><em>
I spent a lot of time making this answer to help you. Please rate it Brainliest!</em>
Answer:20% oofff
Step-by-step explanation:
100-(13*100/o)=z
o=original price
100-(13*100/16.25)=z
100-80=z
20%
answer is z%
Answer:
-20x-2
Step-by-step explanation:
The ratio of all the corresponding sides of the triangle are equal to each other.
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
Two triangles are said to be similar if they have the same shape and the same corresponding angles.
Also, the ratio of all the corresponding sides of the triangle are equal to each other.
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
Table C
Step-by-step explanation:
Given
Table A to D
Required
Which shows a proportional relationship
To do this, we make use of:
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
Where k is the constant of proportionality.
In table (A)
x = 2, y = 4
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{4}{2}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B4%7D%7B2%7D)
![k = 2](https://tex.z-dn.net/?f=k%20%3D%202)
x = 4, y = 9
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{9}{4}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B9%7D%7B4%7D)
![k = 2.25](https://tex.z-dn.net/?f=k%20%3D%202.25)
Both values of k are different. Hence, no proportional relationship
In table (B)
x = 3, y = 4
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{4}{3}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B4%7D%7B3%7D)
![k = 1.33](https://tex.z-dn.net/?f=k%20%3D%201.33)
x = 9, y = 16
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{16}{9}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B16%7D%7B9%7D)
![k = 1.78](https://tex.z-dn.net/?f=k%20%3D%201.78)
Both values of k are different. Hence, no proportional relationship
In table (C):
x = 4, y = 12
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{12}{4}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B12%7D%7B4%7D)
![k = 3](https://tex.z-dn.net/?f=k%20%3D%203)
x = 5, y = 15
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{15}{5}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B15%7D%7B5%7D)
![k = 3](https://tex.z-dn.net/?f=k%20%3D%203)
x = 6, y = 18
![k = \frac{y}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7By%7D%7Bx%7D)
![k = \frac{18}{6}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B18%7D%7B6%7D)
![k = 3](https://tex.z-dn.net/?f=k%20%3D%203)
This shows a proportional relationship because all values of k are the same for this table