1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
11

Help show work 42,44,46,48,50 assig 9

Mathematics
1 answer:
Sedbober [7]3 years ago
7 0

Answer:  see below

<u>Step-by-step explanation:</u>

42)   11 < 3y + 2 < 20

    <u>   -2  </u>  <u>     -2 </u>   <u>  -2  </u>

       9  <  3y      < 18

   <u>  ÷3 </u>   <u>÷3      </u>   <u> ÷3  </u>

      3 <    y      <  6

Graph:   o----------o

             3            6

44)   36 ≥ 1 - 5z >  -21

     <u>  -1   </u>  <u> -1       </u>    <u> -1    </u>

       35 ≥     -5z >  -22

   <u> ÷ -5 </u> ↓ <u>  ÷ -5 </u> ↓ <u>÷ -5 </u>

        7  ≤        z <  4.4

Graph:   o------------ ·

            4.4            7

 

46) 6b + 3 < 15    or    4b - 2 > 18

     <u>       -3 </u>  <u> -3  </u>          <u>     +2  </u>  <u>+2 </u>

      6b       < 12           4b      > 20

    <u> ÷6      </u>     <u>÷6  </u>       <u> ÷4      </u>   <u>÷4  </u>

         b      <  2    or     b     >   5

Graph:   ←--------o   o---------→

                        2    5

48)   8d < -64    and    5d > 25

      ÷8     ÷8                ÷5     ÷5

        d < -8      and       d > 5    

 there is no number that is both less than - 8 and greater than 5

                 No Solution

Graph:   (empty)

                       

50)  15x > 30    and    18x < -36

    <u> ÷15  </u>  <u> ÷15 </u>           <u>÷18  </u>   <u>÷18  </u>

         x >   2      and       x < -2  

 there is no number that is both less than - 2 and greater than 2

                 No Solution

Graph:   (empty)

You might be interested in
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
What is the square root of 6 - the square root of 12?<br><br> Please answer fast!
dmitriy555 [2]

Answer:

1.01 or 1.0

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
3(x-4) + 2x - y2 for x = 5
Alborosie

Answer:

there is some of it sorry cant realy help

Step-by-step explanation:

3x+2x=5x    5*5=25

6 0
3 years ago
What is the height, x, of the equilateral triangle shown?
lbvjy [14]

Answer:

I think it's either 10√3 or 10

5 0
3 years ago
There are 8 pencils in a package. How many packages will be needed for 28 children if each child gets 4 pencils?
Verizon [17]
28*4=112
112/8=14 Packages
8 0
3 years ago
Other questions:
  • The kitchen is 12’ x 14’ x 10 feet, how much will it cost to purchase vinyl floor at $8.80 a foot?
    8·2 answers
  • How do you write 3 2/4 as a fraction greater t hff an 1
    12·1 answer
  • In quadrilateral ABCD, diagonals AC and BD bisect one another: What statement is used to prove that quadrilateral ABCD is a para
    11·1 answer
  • PLEASE HELP!!!!!!!!!!!
    5·1 answer
  • Beth solved the system of equations by making a substitution for y in the second equation.
    6·1 answer
  • A line passes through (-1,7) and (2,10) which answer is the equation of the line
    7·1 answer
  • Which of the following ordered pairs are solutions to the system
    15·1 answer
  • Prove that any median in a triangle is less than the half of the triangle's perimeter.
    14·1 answer
  • 50 Points!!! Easy I’m just dumb!!!!
    11·2 answers
  • Do two lines that intersect make 4 right angles
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!