<span>The proton differs from the electron in sign although they have the same value. Like the electron, a proton will gain 215 electron-volts of eV in Kinetic energy. So 1.602Ă—10^-19 J * 215 = 344.43 * 10^(-19) J.
But K. E. = mv^2 / 2, so v^2 = 2 * K.E/m. The mass of a proton is 1.673 * 10^-27 kg. So v = âš(2 * 344.43 * 10^(-19))/1.673Ă—10^-27 = 688.86 * 10^(-19)/1.673Ă—10^(-27) = 411.75 * 10^(-19-(-27)) = âš411.75 * 10^(8) = 202196.56
Also for the electron we have v^2 = 2 * K.E/m but here mass, m, = 9.109 * 10^-31 kg. So we have v = âš(2 * 344.43 * 10^(-19)) / 9.109 * 10^-31 = 688.86 * 10^(-19)/ 9.109 * 10^-31 = 75.624 * 10^(-19 - (-31)) = 75.624 * 10^(21) and v = 2.749 * 10^11</span>
Explanation:
zoom I'd - 9038735228 pwd -97cEeT I m getting bored wanna come for intresting talk
Answer:
17.55 m/s²
Explanation:
Parameters given:
Mass of Krypton, M = 7.6 * 10^23 kg
Radius, R = 1.7 * 10^6 m
Gravitational constant, G = 6.6726 * 10^(-11) Nm²/kg²
Acceleration due to gravity of planet of mass M is given as:
g = GM/R²
Since the object is close to the surface of Krypton, we can say that the distance from the Centre of Krypton is the radius of the planet Krypton.
Therefore,
g = (6.6726 * 10^(-11) * 7.6 * 10^23)/(1.7 * 10^6)²
g = 17.55 m/s²