Answer:George Washington
Explanation:On April 30, 1789, George Washington, standing on the balcony of Federal Hall on Wall Street in New York, took his oath of office as the first President of the United States.
Did you try googling it lol thats what i do if its a problem like that. sometimes there are websites that answer it you just have to look really hard
Answer:
2274 J/kg ∙ K
Explanation:
The complete statement of the question is :
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
= mass of metal = 400 g
= specific heat of metal = ?
= initial temperature of metal = 100 °C
= mass of aluminum cup = 100 g
= specific heat of aluminum cup = 900.0 J/kg ∙ K
= initial temperature of aluminum cup = 15 °C
= mass of water = 500 g
= specific heat of water = 4186 J/kg ∙ K
= initial temperature of water = 15 °C
= Final equilibrium temperature = 40 °C
Using conservation of energy
heat lost by metal = heat gained by aluminum cup + heat gained by water

Answer:
The work done on the object by the force in the 5.60 s interval is 40.93 J.
Explanation:
Given that,
Force 
Mass of object = 2.00 kg
Initial position 
Final position 
Time = 4.00 sec
We need to calculate the work done on the object by the force in the 5.60 s interval.
Using formula of work done


Put the value into the formula




Hence, The work done on the object by the force in the 5.60 s interval is 40.93 J.