Answer:
6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass
Explanation:
According to the Equation: E = mc²
where the mass, m = 0.71 * 10⁻¹⁶ kg
the speed of light, c = 3 * 10⁸ m/s
The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:
E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²
E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶
E = 0.71 * 9
E = 6.39 J
The capacitive reactance is reduced by a factor of 2.
<h3>Calculation:</h3>
We know the capacitive reactance is given as,

where,
= capacitive reactance
f = frequency
C = capacitance
It is given that frequency is doubled, i.e.,
f' = 2f
To find,
=?




Therefore, the capacitive reactance is reduced by a factor of 2.
I understand the question you are looking for is this:
A capacitor is connected across an AC source. Suppose the frequency of the source is doubled. What happens to the capacitive reactant of the inductor?
- The capacitive reactance is doubled.
- The capacitive reactance is traduced by a factor of 4.
- The capacitive reactance remains constant.
- The capacitive reactance is quadrupled.
- The capacitive reactance is reduced by a factor of 2.
Learn more about capacitive reactance here:
brainly.com/question/23427243
#SPJ4
Answer:
1.01 × 10⁵ Pa
Explanation:
At the surface, atmospheric pressure is 1.013 × 10⁵ Pa.
We need to find the total pressure on the air in the lungs of a person to a depth of 1 meter.
Pressure at a depth is given by :

Where
is the density of air, 
So,

Total pressure, P = Atmospheric pressure + 12 Pa
= 1.013 × 10⁵ Pa + 12 Pa
= 1.01 × 10⁵ Pa
Hence, the total pressure is 1.01 × 10⁵ Pa.
In order to be considered a vector, a quantity must include Magnitude (A) and Direction (D).