Answer:
P (Even number) = 1/2
P(spinner will land on an odd number) = 1/2
P(spinner will not land on 2 or 3) = 3/4
P(spinner will not land on a multiple of 3) = 3/4
Step-by-step explanation:
Here, while spinning the spinner total possible outcomes
are 8 = {1,2,3,4,5,6,7,8}
Now, ![\textrm{P(E)} = \frac{\textrm{Number of favorable outcomes }}{\textrm{Total numberof outcomes}}](https://tex.z-dn.net/?f=%5Ctextrm%7BP%28E%29%7D%20%20%3D%20%5Cfrac%7B%5Ctextrm%7BNumber%20of%20favorable%20outcomes%20%7D%7D%7B%5Ctextrm%7BTotal%20numberof%20outcomes%7D%7D)
a) E: Probability of getting even number
Favorable outcomes are {2,4,6,8}
Hence, ![P(E) = \frac{4}{8} = \frac{1}{2}](https://tex.z-dn.net/?f=P%28E%29%20%3D%20%5Cfrac%7B4%7D%7B8%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
b)E: Probability that the spinner will land on an odd number.
Favorable outcomes are {1,3,5,7}
Hence, ![P(E) = \frac{4}{8} = \frac{1}{2}](https://tex.z-dn.net/?f=P%28E%29%20%3D%20%5Cfrac%7B4%7D%7B8%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
c) E: Probability that the spinner will not land on 2 or 3
Favorable outcomes are {1, 4,5,6,7,8}
Hence, ![P(E) = \frac{6}{8} = \frac{3}{4}](https://tex.z-dn.net/?f=P%28E%29%20%3D%20%5Cfrac%7B6%7D%7B8%7D%20%20%3D%20%5Cfrac%7B3%7D%7B4%7D)
d) E: Probability that the spinner will not land on a multiple of 3
Favorable outcomes are {1,2,4,5,7,8}
Hence, ![P(E) = \frac{6}{8} = \frac{3}{4}](https://tex.z-dn.net/?f=P%28E%29%20%3D%20%5Cfrac%7B6%7D%7B8%7D%20%20%3D%20%5Cfrac%7B3%7D%7B4%7D)