FfsgdhjwvahavHsvsnksnshsnvbsvsvns
Answer:
(c, m) = (45, 10)
Step-by-step explanation:
A dozen White Chocolate Blizzards generate more income and take less flour than a dozen Mint Breezes, so production of those should clearly be maximized. Making 45 dozen Blizzards does not use all the flour, so the remaining flour can be used to make Breezes.
Maximum Blizzards that can be made: 45 dz. Flour used: 45×5 oz = 225 oz.
The remaining flour is ...
315 oz -225 oz = 90 oz
This is enough for (90 oz)/(9 oz/dz) = 10 dozen Mint Breezes. This is in the required range of 2 to 15 dozen.
Kelly should make 45 dozen White Chocolate Blizzards and 10 dozen Mint Breezes: (c, m) = (45, 10).
__
In the attached graph, we have reversed the applicable inequalities so the feasible region shows up white, instead of shaded with 5 different colors. The objective function is the green line, shown at the point that maximizes income. (c, m) ⇔ (x, y)
Answer:
9% fund: $
210,000
13% fund: $70,000
Step-by-step explanation:
As she wants to have a $28,000 annual return for her $280,000 investment, she is expecting a return rate of 10%:

If we call x the proportion of the capital in the 9% fund, then (1-x) is the proportion of the capital in the 13% fund,and the return of the combination has to be the expected return of 10%:

Then, we know that 75% of the capital should be invested in the 9% fund and 25% in the 13% fund.
This correspond to a capital of:
9% fund: 0.75*$280,000 = $
210,000
13% fund: 0.25*$280,000 = $70,000
Answer:
(a) 
(b) 
<em>(b) is the same as (a)</em>
(c) 
(d) 
(e) 
Step-by-step explanation:
Given

Solving (a): Probability of 3 or fewer CDs
Here, we consider:

This probability is calculated as:

This gives:


Solving (b): Probability of at most 3 CDs
Here, we consider:

This probability is calculated as:

This gives:


<em>(b) is the same as (a)</em>
<em />
Solving (c): Probability of 5 or more CDs
Here, we consider:

This probability is calculated as:

This gives:


Solving (d): Probability of 1 or 2 CDs
Here, we consider:

This probability is calculated as:

This gives:


Solving (e): Probability of more than 2 CDs
Here, we consider:

This probability is calculated as:

This gives:

