9r
Explanation:
4r + 9r = 13r
13r-11r = 2r
2r + 7r = 9r
Answer:
Slope=
2.000
0.800
=0.400
x−intercept=
2
/5
=2.50000
y−intercept=
−5
/5
=
−1
1
=−1.00000
Step-by-step explanation:
STEP
1
:
Pulling out like terms
1.1 Pull out like factors :
6x - 15y - 15 = 3 • (2x - 5y - 5)
Equation at the end of step
1
:
STEP
2
:
Equations which are never true
2.1 Solve : 3 = 0
This equation has no solution.
A a non-zero constant never equals zero.
Equation of a Straight Line
2.2 Solve 2x-5y-5 = 0
Tiger recognizes that we have here an equation of a straight line. Such an equation is usually written y=mx+b ("y=mx+c" in the UK).
"y=mx+b" is the formula of a straight line drawn on Cartesian coordinate system in which "y" is the vertical axis and "x" the horizontal axis.
In this formula :
y tells us how far up the line goes
x tells us how far along
m is the Slope or Gradient i.e. how steep the line is
b is the Y-intercept i.e. where the line crosses the Y axis
The X and Y intercepts and the Slope are called the line properties. We shall now graph the line 2x-5y-5 = 0 and calculate its properties
The volume of the large cylinder will be twice the volume of the small cylinder.
<u>Step-by-step explanation:</u>
Let the radius of the cylinder be 'r'
Let the height of the cylinder be'h'
Volume of the small cylinder=π r² h
Volume of the large cylinder= π r² (2h)
Volume of large cylinder/volume of small cylinder= 2/1
The large cylinder volume is twice the volume of the small cylinder.
The total number of ways the study can be selected is: 637065
Given,
Total number of women in a group= 13
Total number of men in a group = 12
Number of women chosen = 8
Number of men chosen = 8
∴ the total number of ways the study group can be selected = 13C₈ and 12C₈.
This in the form of combination factor = nCr
∴ nCr = n!/(n₋r)! r!
13C₈ = 13!/(13 ₋ 8)! 8!
= 13!/5!.8!
= 1287
12C₈ = 12!/(12₋8)! 8!
= 12!/5! 8!
= 495
Now multiply both the combinations of men and women
= 1287 × 495
= 637065
Hence the total number of ways the study group is selected is 637065
Learn more about "Permutations and Combinations" here-
brainly.com/question/11732255
#SPJ10