1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
15

If sin t = -8/17 and t is a quadrant III angle, find cot t

Mathematics
1 answer:
nirvana33 [79]3 years ago
8 0

Answer:cot t = 1.875

sin t=\frac{-8}{17} but sin²t + cos²t = 1 ⇔ cos²t = 1 - sin²t

⇔cos t = \sqrt{1-sin^{2}t }=\sqrt{1-(\frac{-8}{17})^{2}  }=|\frac{15}{17}|

but  t is a quadrant III angle => cos t = \frac{-15}{17}

=> cot t = \frac{-15}{17}:\frac{-8}{17}=\frac{15}{8}=1.875

Step-by-step explanation:

You might be interested in
I need to the anser to 4 times 6c
faltersainse [42]

Answer:

24c

Step-by-step explanation:

I see 4 times 6c, which is,

24c

Hope this helps!!

5 0
2 years ago
La barbería El Caleño, tiene en promedio 120 clientes a la semana a
Luba_88 [7]

Queremos maximizar el precio de tal forma que los ingresos no disminuyan.

Ese maximo precio es: $14,040.6

Sabemos que actualmente el precio es:

p = $6,000

El número de clientes es:

C = 120

Actualmente los ingresos son el producto de esos dos números, es decir:

ingresos = $6,000*120 = $720,000

Ahora sabemos que por cada incremento de $700 en el precio, el número de clientes decrece en 10.

Entonces podemos escribir el número de clientes como una ecuación lineal.

C(p) = a*p + b

tal que tenemos dos puntos en esa linea:

($6,000, 120)

($6,700, 110)

La pendiente es:

a = \frac{110 - 120}{\$6,700 - \$6,000} = \frac{-10}{\$ 700}

Entonces tenemos:

C(p) = (-10/$700)*p + b

Sabemos que:

C($6,000) = 120 = (-10/$700)*$6,000 + b

                     120 = -85.71 + b

                     120 + 85.71 = b =

Entonces la ecuación lineal es:

C(p) = (-10/$700)*p + 205.71

Los ingresos serán dados por:

ingresos = C(p)*p = (-10/$700)*p^2 + 205.71*p

Y queremos maximizar p de tal forma que esto sea igual a lo que obtuvimos antes:

(-10/$700)*p^2 + 205.71*p = $720,000

Entonces debemos resolver la ecuación cuadratica:

(-10/$700)*p^2 + 205.71*p - $720,000 = 0.

Las soluciones son dadas por la formula de Bhaskara.

p = \frac{-205.71 \pm \sqrt{(205.71)^2 - 4*(-10/\$ 700)*\$ 720,000} }{2*(-10/\$ 700)} \\\\p = \frac{-205.71 \pm 195.45}{(-20/\$ 700)}

La solución de maximo valor es:

p = (-205.71 - 195.45)/(-20/$700) = $14,040.6

Sí quieres aprender más, puedes leer.

brainly.com/question/8926135

7 0
2 years ago
D-13=6 <br> F-26=12<br> M+18=109<br> 56+k=231 <br><br> How do you solve these with steps
lapo4ka [179]

Answer:

D=6+13=19

Step-by-step explanation:

F=26+12=38

M=109-18=91

k=231-56=175

8 0
3 years ago
Is 6r + 3w - 2r + 5w equivalent to 4(r + 2w)<br><br> Please help I need the answer ASAP
nikklg [1K]
I believe the answer is No
5 0
3 years ago
I will give brainliest
Elanso [62]

Answer:

x + y

Step-by-step explanation:

An expression for the average of x,2x and 3y

average = (x+2x+3y)/3

= (3x+3y)/3

= 3(x+y)/3

= x + y

7 0
2 years ago
Other questions:
  • D. The sum of two numbers is 30 and the difference of these numbers is 6.
    12·1 answer
  • What is the equation of the line in slope-intercept form?
    10·2 answers
  • This data set represents the number of cups of coffee sold in a caf_ between 8 a.m. and 10 a.m. every day for 14 days.
    6·1 answer
  • 10x-3×=-18 -7×-8y=11<br><br>A.(-7,-10)<br>B.(-4,5)<br>C.(3,-4)<br>D.(2,-1)
    8·1 answer
  • Hey! Can somebody please help my friend with 5,211 ÷ 6? I need to have a picture of the work if somebody can please do that!
    13·2 answers
  • There are 8 performers who will present their comedy acts this weekend at a comedy club. One of the performers insists on being
    5·1 answer
  • What is the GCF of 44j^5k^4 and 121j^2k^6?
    12·2 answers
  • Charlie graphs the equation y= –12x+2 .
    15·1 answer
  • PLEASE HELP ME IM STUCK ON THIS QUESTION
    8·1 answer
  • Answer fast pleaseeeee!!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!