Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc len gth is given by
1 answer:
The length of a curve <em>C</em> parameterized by a vector function <em>r </em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is
In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then
You might be interested in
Answer: B
Step-by-step explanation:
A proper fraction is when a fraction has the numeration less than the denominator
the light bulb uses 8100 total watts
Check picture below
recall
7=4w+19 7-19 = 4w+19-19 -12 = 4w -12/4 = 4w/4 -3 = w
Brainliest plsssssssss
plus 5 star rating
Thanks