Answer:
58 1/2
Step-by-step explanation:
multiply by 3/4
Answer: 153 trays
Step-by-step explanation:
hotdogs =153
Hamburger = 171
Mike is to put the same number of hamburger and hotdogs in each plate.
we assume that a whole number of each food is placed in each tray.
The maximum amount of trays will be determined by the minimum food which is hotdog, so, the hotdog is the constraint.
Mike will have to use 153 trays.
The answer is 1,728,because you multiply 36 nd 18
Answer:
The answer is 1/3
Step-by-step explanation:
Let the events of getting the no. greater than 4 be (>4).
Then,
<em>n</em><em>(</em><em>s</em><em>)</em><em> </em><em>=</em><em> </em><em>6</em>
<em>n</em><em>(</em><em>></em><em>4</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em>
<em>P</em><em>(</em><em>></em><em>4</em><em>)</em><em> </em><em>=</em><em> </em><em>n</em><em>(</em><em>></em><em>4</em><em>)</em><em>/</em><em>n</em><em>(</em><em>s</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>/</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>/</em><em>3</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
Note that

,

,

, and so on. The function

is continuous and increasing for all

, so when

, we have

; when

,

; and so on.
This means

which means we can capture the number of digits of

with the function

.
So the problem is the same as finding positive integer solutions to

We know that

has one digit, so clearly this must be a solution. We need to show that this is the only solution.
Recall that
![\dfrac{\mathrm d}{\mathrm dx}[\log_{10}x+1]=\dfrac1{\ln10\,x}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%5Clog_%7B10%7Dx%2B1%5D%3D%5Cdfrac1%7B%5Cln10%5C%2Cx%7D)
, while
![\dfrac{\mathrm d}{\mathrm dx}[x]=1](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5D%3D1)
. This means

increases at a much slower rate than

as

. We know the two functions intersect when

. Therefore it's clear that

for all

.
Now, it's always the case that

, so we're essentially done:

which means there are no other solutions than

.