Answer:
Step-by-step explanation:
<u>Given AP with:</u>
- a₁= 28, aₙ = 79, Sₙ = 963
<u>Use the formula:</u>
- Sₙ = 1/2n(a₁ + aₙ), sum of the first n terms
<u>Substitute given values and solve for n:</u>
- 963 = 1/2n(28 + 79)
- 963 = 1/2n(107)
- 1/2n = 963/107
- 1/2n = 9
- n = 9*2
- n = 18
Answer:
x=30
Step-by-step explanation:
Answer:
(n^3 + 4 n + 4487)/(n + 1)
Step-by-step explanation:
Simplify the following:
(n^3 + 4 n - 2 + 67^2)/(n + 1)
| | 6 | 7
× | | 6 | 7
| 4 | 6 | 9
4 | 0 | 2 | 0
4 | 4 | 8 | 9:
(n^3 + 4 n - 2 + 4489)/(n + 1)
Grouping like terms, n^3 + 4 n - 2 + 4489 = n^3 + 4 n + (4489 - 2):
(n^3 + 4 n + (4489 - 2))/(n + 1)
4489 - 2 = 4487:
Answer: (n^3 + 4 n + 4487)/(n + 1)
Answer:
Congruent triangles
Step-by-step explanation:
Answer:
x=-3
Step-by-step explanation:
4/x=8/(x-3)
We can solve this using cross products
4 ( x-3) = 8x
Distribute
4x -12 = 8x
Subtract 4x from each side
4x-4x-12 = 8x-12-4x
-12 =4x
Divide each side by 4
-12/4 = 4x/4
-3 =x