Answer: The answer is 49 because 128-79=49
1. Subtract 6x from both sides so now you have -2y = -6x + 18
2. Divide everything by -2, then you would have y = 3x - 9
3. The equation is now in slope intercept form so the answer is 3.
The derivatives of the functions are listed below:
(a)
(b) 
(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²
(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]
(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶
(f)
(g)
(h) f'(x) = cot x + cos (㏑ x) · (1 / x)
<h3>How to find the first derivative of a group of functions</h3>
In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:
(a) ![f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}](https://tex.z-dn.net/?f=f%28x%29%20%3D%202%20%5Ccdot%20x%5E%7B-%5Cfrac%7B7%7D%7B2%7D%20%7D%20-%20x%5E%7B2%7D%20%2B%204%20%5Ccdot%20x%20-%20%5Cfrac%7Bx%7D%7B5%7D%20%2B%20%5Cfrac%7B5%7D%7Bx%7D%20-%20%5Csqrt%5B11%5D%7B2022%7D)
Given
Definition of power
Derivative of constant and power functions / Derivative of an addition of functions / Result
(b) ![f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%20%2B%203%7D%20%5Ccdot%20%5Csqrt%5B3%5D%7Bx%20%2B%205%7D)
Given
Definition of power
Derivative of a product of functions / Derivative of power function / Rule of chain / Result
(c) f(x) = (sin x - cos x) / (x² - 1)
- f(x) = (sin x - cos x) / (x² - 1) Given
- f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)² Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result
(d) f(x) = 5ˣ · ㏒₅ x
- f(x) = 5ˣ · ㏒₅ x Given
- f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)] Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result
(e) f(x) = (x⁻⁵ + √3)⁻⁹
- f(x) = (x⁻⁵ + √3)⁻⁹ Given
- f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶ Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
- f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶ Associative and commutative properties / Definition of multiplication / Result
(f) 
Given
Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
Distributive property / Result
(g) 
Given
Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result
(h) f(x) = ㏑ (sin x) + sin (㏑ x)
- f(x) = ㏑ (sin x) + sin (㏑ x) Given
- f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x) Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
- f'(x) = cot x + cos (㏑ x) · (1 / x) cot x = cos x / sin x / Result
To learn more on derivatives: brainly.com/question/23847661
#SPJ1
The decimal place to the right of the tenths place is the hundredths place. The digit in that place is 9.
When the digit to the right of the place you're rounding to is more than 4, you increase the digit in the rounding place by 1.
Here, we have the hundredths digit is 9, which is more than 4, so we increase the tenths digit by 1. The rounded number is
... 56.4
_____
Another way to get there is to add 5 in the hundredths place (the place to the right of the one you're rounding to). When you do that, you get 56.448. Now, throw away all the digits to the right of the one you're rounding to. This leaves
... 56.4
_ _ _ _ _ _ _
The reason I show this last method is to deal with cases like rounding 56.978. By the first rule, you're increasing the digit 9 by 1, which might be confusing. (it requires a carry into the next digit, making 57.0.) If you add .05 to this number, you get 56.978 +.05 = 57.028. Now when you throw away the digits to the right of the tenths digit, you have 57.0.