Answer:
2 is the answer
Explanation:
Si: 1s2 2s2 2p6 3s2 3p2
Number of the unpaired electron will be 2
Here we have to draw the mechanism of the reduction reaction between benzaldehyde and sodium borodeuteride to form the corresponding alcohol.
The reducing agent sodium borodeuteride can reduce the aldehydes to its corresponding alcohol. The reaction mechanism is shown in the attached image.
The reaction mechanism can be explained as-
The sodium borodeuteride is highly ionic in nature thus it remains as Na⁺ and BD₄⁻ The deuterium atom of BD₄⁻ attack the carbonyl carbon atom and substitute one of its deuterium as shown in the figure.
One molecule of sodium borodeuteride can reduce four molecules of benzaldehyde. The polar solvent like alcohol donates the proton as shown in the mechanism.
The converted alcohol contains the deuterium atom at the -C center. Thus benzaldehyde is converted to deuteroted benzyl alcohol.
Answer:
28.75211 kj
Explanation:
Given data:
Mass of iron bar = 841 g
Initial temperature = 84°C
Final temperature = 7°C
Heat released = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
specific heat capacity of iron is 0.444 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 7°C - 84°C
ΔT = -77°C
By putting values,
Q = 841 g × 0.444 j/g.°C × -77°C
Q = 28752.11 j
In Kj:
28752.11 j × 1 kJ / 1000 J
28.75211 kj
1. A) Bohr
2. D) When excited electrons return back to the ground state, a photon of light is emitted.
3. D) 10.812 amu
Hope this helps! :)
Answer:
B
Explanation:
The cell membrane cannot receive or recognize chemical signals