The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
Answer:
Ionic
Explanation:
Mg has 2 electron in it's outermost orbit, by donating this two electron to Sulfur it get stable mg 2+ electronic configuration while sulfur has 6 electron in it's outermost shell ,so sulfur accept this 2 electron and complete it's octet and become s2–.
Answer:
390 m
Explanation:
Martha ran 420 m
Cole ran 60 m less than Martha = 420 m - 60 m = 360 m
The distance Kate ran is right in the middle of Martha and Cole's distances
Kate distance = (420 + 360) / 2 = 780 / 2 = 390 m
Molarity
Molarity is a unit used to express the concentration of a substance, and it is defined as the number of moles of solute per decimeter cubed (liter) of solvent.
Answer:
Cost to supply enough vanillin is 
Explanation:
Threshold limit of vanillin in air is
per litre means there should be
of vanillin in 1L of air to detect aroma of vanillin.

So, 
So amount of vanillin should be present to detect = 
As cost of 50 g vanillin is
therefore cost of
vanillin = 